Implementasi Algoritma Konstruksi Relasi Objek Transitive Closure Berdasarkan Adjacency Hyperedges Matrix
(1) 
(2) 
(3) 
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Soetrisno, Hariadi, N., and Suhartanto, H., “Constructing Transitive Closure on Multigraph using Adjacency Hyperedges Matrix,” 2017 International Conference on Advanced Computer Science and Information Systems, Jakarta, Indonesia, 28-29 Oktober 2017.
Cahya, S., “Identifikasi Partially Similar Objects Menggunakan Adjacency Hyperedges Matrix,” Konferensi Nasional Sistem Informasi 2016, Batam Riau, Agustus 2016, pp. 624-629, ISBN: 978-602-74905-0-5.
S. Soetrisno, S., and H. Suhartanto, “Adjacency Hyperedges Matrix for Multi-Objects Connection Model on Non-uniform Object Features. International Journal of Advancements Computing Technology (IJACT). Vol. 6, No. 6, 2014, pp. 113-125.
R.T. Olszewski, “Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data,” Doctoral Philosophy Dissertation, School of Computer Science Carnegie Mellon University, Pittsburgh PA 15213. CMU-CS-01-108, 2001. pp. 1-23.
P. Ren, “Developments in Structural Learning Using Ihara Coefficients and Hypergraph Representation,” Doctor of Philosophy (Thesis), 2010. Department of Computer Science, University of York.
L. Sun, S. Ji, and J. Ye, “Hypergraph Spectral Learning for Multi-label Classification,” KDD’08. , August 24-27, 2008, Las Vegas, USA. ACM 978-1-60558-193-4/08/08.
M.O. Saliu, and G. Ruhe, G., ”Bi-Objective Release Planning for Evolving Software Systems,” ESEC/FSE’07, September 3-7, 2007, Cavtat near Dubrovnik, Croatia, ACM SIGSOFT symposium on The foundations of software engineering, ACM 978-1-59593-811-4/07/0009, pp. 105-114.
D. Zhou, J. Huang, and B. Scholkopf, ”Learning with Hypergraph: Clustering, Classification, and Embedding,” Advances in Neural Information Processing Systems, pp. 1601–1608, 2006. Accessed from http://research. microsoft.com/en-us/um/people/denzho/papers/hyper.pdf.
Refbacks
- There are currently no refbacks.