Implementasi objek detection dan tracking menggunakan deep learning untuk pengolahan citra digital
Abstract
Artikel ini bertujuan untuk mendeskripsikan peningkatan hasil pengolahan citra digital melalui objek detection dan tracking dengan memanfaatkan arsitektur deep learning. Metode yang digunakan dalam penelitian ini adalah metode deep learning, CAMShift, dan Faster R-CNN yang dilalui dengan serangkaian tahapan, yaitu: merancang dan mengimplementasikan metode yang digunakan dengan Raspberry Pi menggunakan Python dan Library OpenCV, mengkombinasikan Faster R-CNN dengan CAMShift, testing proses yang dibangun menggunakan data real time video yang telah dikumpulkan, setelah itu mengevaluasi kinerja dari segi akurasi terhadap masing-masing proses menggunakan hasil pengolahan tahap penggabungan metode yang telah dikumpulkan, dan menarik kesimpulan. Berdasarkan hasil studi penelitian, maka dapat di simpulkan bahwa penggabungan metode tersebut dapat dilakukan, akan tetapi masih memiliki beberapa kelemahan, yaitu pada saat proses penyimpanan data digital sangat banyak membutuhkan waktu proses penyimpanan yang lama, dan akurasi citra gambar digital belum memuaskan.References
W. Jiang-tao and Y. Jing-yu, “Object tracking based on kalman-mean shift in occlusions,” Journal of System Simulation, pp. 4216–4220, 2007.
J. Xia, J. Wu, H. Zhai, and Z. Cui, “Moving vehicle tracking based on double difference and CAMShift,” Proceedings of the 2009 International Symposium on Information Processing, pp. 29–32, 2009.
M. K. Chouhan, R. Mishra, and D. D. Nitnawwre,“Movable object tracking by using mean shift method with adjusted background histogram,” International Journal of Advanced Research in Computer Science and Software Engineering, pp. 16–19, 2012.
Li, Dawei, Lihong Xu, and Yang Wu. (2017). Improved CAMShift object tracking based on Epanechnikov Kernel Density Estimation and Kalman filter.
Tian, Yun, Carol Taylor, and Yanqing Ji. (2018). Improving the Performance of the CamShift Algorithm Using Dynamic Parallelism on GPU.
Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding∗. 2014.
D. Ciresan, U. Meier, J. Masci, L. Gambardella, and J. Schmidhuber. High-Performance Neural Networks for Visual Object Classification. In: CoRR abs/1102.0183 (2011).
D. Parikh and C.L. Zitnick. Finding the weakest link in person detectors. In ComputerVision and Pattern Recognition, pages 1425–1432. IEEE, 2011.
T. Malisiewicz, A. Gupta, and A.A. Efros. Ensemble of exemplar-svms for object detection and beyond. In International Conference on Computer Vision, pages 89–96. IEEE, 2011.
Zeiler, Matthew D. and Fergus, Rob. Stochastic pooling for regularization of deep convolutional neural networks. In International Conference on Learning Representations, 2013.
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014.
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML, 2014.