

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

378

Towards Human-Level Safe Reinforcement

Learning in Atari Library

Afriyadi Afriyadi [1] *, Wiranto Herry Utomo [2]

Faculty of Computing, President University [1], [2]

Cikarang, Indonesia

afriyadi.it@gmail.com[1] , wiranto.herry@president.ac.id[2]

Abstract— Reinforcement learning (RL) is a powerful tool for

training agents to perform complex tasks. However, from time-to-

time RL agents often learn to behave in unsafe or unintended

ways. This is especially true during the exploration phase, when

the agent is trying to learn about its environment. This research

acquires safe exploration methods from the field of robotics and

evaluates their effectiveness compared to other algorithms that are

commonly used in complex videogame environments without safe

exploration. We also propose a method for hand-crafting

catastrophic states, which are states that are known to be unsafe

for the agent to visit. Our results show that our method and our

hand-crafted safety constraints outperform state-of-the-art

algorithms on relatively certain iterations. This means that our

method is able to learn to behave safely while still achieving good

performance. These results have implications for the future

development of human-level safe learning with combination of

model-based RL using complex videogame environments. By

developing safe exploration methods, we can help to ensure that

RL agents can be used in a variety of real-world applications, such

as self-driving cars and robotics.

Keywords— reinforcement learning, videogame environment,

safety constraint, safe reinforcement learning

I. INTRODUCTION

Reinforcement Learning (RL) is a subfield of machine

learning that is widely used in solving decision-making

problems [42]. In RL, an agent learns to interact with an

environment to achieve a specific goal by taking actions that

maximize a reward signal. This technique has been successfully

applied in various fields, such as robotics, gaming, and finance

[12, 29, 30]. However, unlike humans, ensuring safety while

solving a problem is still a big challenge in RL, it is to make the

agent learn without causing harm to itself or the environment

[27].

Traditional RL algorithms optimize for the maximum

reward, which can lead to unsafe behaviors, especially in

environments with potentially harmful states. To address this

issue, researchers have proposed several approaches [8, 9, 14,

15, 21, 41, 45, 52, 53], all of the research are in the scope of

Safe Reinforcement Learning (Safe-RL), including adding

safety constraints or modifying the reward function to

incorporate safety. These approaches aim to maintain a balance

between achieving the maximum reward and ensuring safety.

Despite the advancements in RL algorithms, there is still a

gap in developing Safe-RL agents that can balance between

achieving the maximum reward and ensuring safety. While

there have been studies on safe exploration during training and

implementation in RL [49], it is mainly focused on simple

environments and tasks, such as the cart-pole or mountain-car

tasks. There is a need to evaluate the effectiveness of Safe-RL

in more complex environments. In addition, there is a need to

investigate the results of various training iteration quantities on

the reward and safety violations and see the minimum iteration

to achieve optimal results for the algorithm.

We have several motivations in this research. First is the fact

that in RL research, especially in robotics, researchers are

required to perform initialization of the agent and environment

state after finishes each iteration or each episode. This

initialization is consuming a lot of work for the researcher [55].

Second, the proposed solution to reduce labor by creating

simulated environment [55] if effective, but the process of

creating simulated environment from scratch itself also required

significant amount of labor [10, 54]. In other hand, the

videogame today, have a diverse set of almost-realistic

environments that can be the learning environment for RL

agents. And third, the solution of using simulated environment,

and creating simulated environments does not yet include safety

concerns.

We propose to develop a framework to perform robotic

tasks in videogame environments, instead of developing each

environment for each specific experiment. To do this we

propose using Atari library as the example videogame

environment, specifically with Super-Mario-Bros game, which

is an easy-to-understand game, the game have complex

environments, and require the algorithm to perform near-human

like intelligence. And within the game, there are also several

states that can end the game, that can be declared as unsafe state.

We are expecting this research as a steppingstone to utilizing

videogame environments for research purposes and reduce

researcher additional work for creating simulated environments

for every research. And lastly, we want to explore the impact of

using the Safe-RL algorithm which usually implemented for

mailto:afriyadi.it@gmail.com[1
mailto:wiranto.herry@president.ac.id[2

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

379

robotics and autonomous driving in videogame environment.

The goal is to explore the potentials from incorporating a

safety mechanism in RL algorithms, seeking towards human-

like behavior to RL agents when they are introduced with

unsafe states and safety concerns, and still maintain optimal

rewards during training and deployment. And we want to

simulate this safety-constrained behavior in a complex

videogame environment, to show the potential of utilizing

videogame environments for RL research.

This research proposes a novel approach for Safe-RL by

combining modified reward concepts and hand-crafted safety

constraints in state-of-the-art RL algorithms, specifically

Double Deep Q-Network (DDQN) [19], to achieve high rewards

while ensuring safe exploration in the presence of unsafe states.

Furthermore, this research explores the effectiveness of various

training iteration quantities. Monitoring closely the rewards,

and safety violations through customized evaluation metrics.

The experiment involves simulating the safety-constrained

algorithm in the Atari Library and gym (OpenAI Gym [10])

environment. The Atari Library is a collection of 57 classic

Atari 2600 games that are used as benchmark environments for

RL research. OpenAI Gym [10] is a toolkit provided by the

OpenAI company for developing and comparing reinforcement

learning algorithms. It provides several environments that can

be used to train RL agents, as well as several tools for

evaluating the performance of agents. The usage of gym in this

research is to investigate whether the agent will act more safely

and towards human-like behavior after being introduced with

safety constraint and unsafe states compared with the default

gym settings.

This research also includes developing and evaluating

safety mechanisms in agent’s exploration method during

training and implementation. The evaluation will be based on

the performance of the agent in achieving maximum rewards

while demonstrating safe exploration in the presence of unsafe

states, as well as the number of safety violations.

The research will also include the development of safety

violation measurements to be applied to the agents trained using

DDQN algorithm. The training iteration quantity will be varied

to determine the impact of the number of iterations on the

performance of the agent. Additionally, the research will

explore the use of modified rewards as a method of enforcing

safety constraints during training.

II. PRELIMINARIES

A. Problem Statement

 The field of Reinforcement Learning (RL) has gained
significant attention in recent years due to its potential for
enabling agents to learn from experience and improve
decision-making [42]. However, ensuring safety in RL
environments remains a crucial challenge. Developing

safety mechanisms is essential to ensure the safety of both
the agent and the environment. While researchers in the
field of robotics and autonomous driving primarily perform
Safe-RL training in simulated environments created
specifically for their research, this approach adds extra work
for researchers in developing Safe-RL agents.

 In contrast, the gaming industry has been expanding
rapidly and has developed many games that emulate real-
world situations. Utilizing video game environments as an
alternative to creating new simulation environments from
scratch for each research case shows promise. This research
aims to investigate the effectiveness of Safe-RL algorithms,
commonly used in robotics and autonomous driving, in
complex video game environments. By incorporating hand-
crafted safety constraints and reward modification, the
research aims to explore the performance and safety
capability of RL agents in these complex video game
environments. This initial investigation is expected to
provide valuable insights into the potential of using video
game environments as simulated environments for the
development of human-level RL agents in real-world
implementations such as robotics, autonomous driving, and
other applicable domains.

 The goal of this experiment is to assess whether the
implementation of hand-crafted safety constraints to the
algorithm will generate safer, human-like behavior while
maintaining high rewards [42]. Specifically, the research
will use state-of-the-art RL algorithms, such as Double
Deep Q-Network (DDQN), as a baseline without safety
constraints. The effectiveness of these algorithms in
achieving maximum rewards and the frequency of safety
violations will be evaluated. The research will then develop
and apply hand-crafted safety constraints to the algorithm,
incorporating awareness of unsafe states to prevent agents
from repeating unsafe actions or revisiting unsafe states
during training and exploration. The performance of the
agent with safety constraints will be compared to the
performance of the baseline algorithms without safety
constraints to determine the effectiveness of the safety
constraints in reducing safety violations.

 To measure the implementation of the hand-crafted
safety constraints, a set of unique evaluation metrics will be
developed. These metrics will assess the tradeoff between
maximum rewards and safety violations for the RL agents
in the video game environment. The performance of the
safety-constrained algorithms will be compared to that of
the non-safety-constrained algorithms, and the results will
be presented in an easy-to-understand report.

 In summary, this research aims to address the
challenge of safety in RL by investigating the effectiveness
of Safe-RL algorithms in complex video game
environments. By incorporating hand-crafted safety
constraints and reward modification, the research aims to
explore the performance and safety capability of RL agents.
The research objectives include evaluating the effectiveness
of safety constraints, developing unique evaluation metrics,

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

380

and comparing the performance of safety-constrained and
non-safety-constrained algorithms.

B. Literature Review

Fig. 1. We use eight recent review papers, 20 high impact papers within

more than 5 years range, and relevant papers within 5 years range. We

also use three books and one high impact Ph.D. thesis related to Safe-RL

development. (Literature Composition)

Fig. 2. Start with RL topics, then immediately pivot to Safe-RL. Categorize

based on Industry, including Robotics, Autonomous Driving and

Videogames. And categorize based on Safe-RL Methods, including

Intrinsic Motivations, Intervention and Constraints. (Topics

Composition)

 We are starting by collecting the latest review papers
within the field of RL and Safe-RL. Then continued with
collecting information from high-impact papers mentioned
in the review papers. And for deeper fundamentals, we also
collect and analyze from major RL books and theses. The
architecture of the literature is as follows:

 We start investigating RL in general, also the
challenge and opportunities that still exist in the field. Then
we focused on safety concerns in RL, we investigated the
safety concerns in the field of robotics, autonomous driving,
and videogames. Then we investigate the common methods
to implement safety within those fields, including intrinsic
motivations, intervention with shielding, and putting safety
constraints on the algorithm.

 We also investigate the drawbacks of implementing
RL in the field of robotics, autonomous driving and
videogames, including the labor required to perform RL
training in real-world, and how the researchers reduce this
labor by performing training in simulated environments.

And how researchers started to use videogame
environments to perform RL experiments.

C. Reinforcement Learning (RL)

TABLE I. The difference between Supervised Learning, Unsupervised
Learning and Reinforcement Learning.

Classes of Learning Problems
Supervised

Learning
Unsupervised

Learning
Reinforcement

Learning
Data: (x, y)
x is data, y is
label

Data: x
x is data, no
labels

Data: state-
action pairs

Goal: Learn
function to
map x → y

Goal: Learn
underlying
structure

Goal: Maximize
future rewards
over many time
steps

Strawberry
Example:

This is
strawberry

Strawberry
Example:

These two items
are similar, and
should put into
same category

Strawberry
Example:

Eat this item to
stay alive longer

 Reinforcement learning (RL) is a popular machine
learning approach that allows an agent to learn through
interaction with an environment via trial-and-error [42]. The
objective of RL is to learn a policy that maximizes the
cumulative reward over time, based on state transitions and
rewards observed through the agent's actions. The policy is
a mapping from states to actions, and the goal is to learn the
optimal policy that maximizes the expected cumulative
reward. [42, 20]

 Compared to supervised and unsupervised learning,
RL differs in that RL learns from interaction with the
environment rather than a labeled dataset. Supervised
learning uses labeled examples from a human expert, while
unsupervised learning learns from the underlying structure
of data. [42].

 RL has gained popularity due to its wide-ranging
applications, including robotics, gaming, finance,
healthcare, and transportation [46]. In robotics, RL has been
used to train robots to perform complex tasks such as
grasping and manipulation. In gaming, RL has been used to
train agents to play games such as Chess, Go, and Poker at
a superhuman level [40]. RL has also been applied in
finance to optimize trading strategies and in healthcare to
develop personalized treatment plans.

 RL is composed of various components, such as the
agent, the environment, the reward signal, the policy, and
the value functions. The agent is responsible for taking
actions in the environment based on its policy. The
environment is the external system that the agent interacts
with. The reward signal is a numerical feedback signal that
the agent receives from the environment, indicating how
well it is performing in the task. The policy is the strategy
that the agent uses to select its actions in a given state. The

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

381

value function is a function that estimates the long-term
value of a state or a state-action pair, which the agent uses
to make decisions. These components are fundamental to
RL and are necessary for the learning process to occur [42]

Fig. 3. RL agent in the state s, and then performing action a based on policy

π, resulting in reward r and new state s’. (Components of RL)

D. Markov Decision Process

 Markov Decision Processes (MDP) is a widely used
framework in RL for modeling decision-making problems
with uncertainty [42]. MDP provides a mathematical
formulation [16] for solving sequential decision-making
problems in stochastic environments.

 The Markov Property assumes that the current state s
has all the relevant information to predict the future and
does not require any information from the past [42, 48]. A
MDP is a decision process based on these assumptions. It is
represented by a tuple (S, A, P, R, γ) where S denotes the
set of states, A denotes the set of actions, P denotes the state
transition probability function, R denotes the reward
function, and γ denotes the discount factor.

 The MDP model assumes that the agent interacts with
the environment over a sequence of discrete time steps,
t=1,2,3,...,T. At each time step, the agent observes the
current state of the environment and selects an action to
perform based on its policy. The environment then
transitions to a new state according to the transition
probability function, and the agent receives a reward based
on the reward function [42, 48]. State transition probability
is denoted mathematically as:

𝑃𝑠𝑠′ = ℙ [𝑠𝑡+1 = 𝑠′ | 𝑠𝑡 = 𝑠] (1)

st denotes the current state of the agent and st+1 denotes the
next state. What this equation means is that the transition
from state St to St+1 is entirely independent of the past.

 When working with MDPs, the agent interacts with the
environment by selecting actions that lead to a change of
state and a corresponding reward. The state refers to the
current state of the environment, while the action represents
the decision made by the agent. The reward function is
responsible for determining the reward the agent receives
for taking a specific action in a particular state. Meanwhile,

the transition probability function determines the
probability of moving to a new state based on the current
state and the action taken by the agent [42].

Returns (Gt) is the total reward expected from the
environment, and returns is denoted mathematically as:

𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + ⋯ + 𝑟𝑇 (2)

 The discount factor (γ) is a value between 0 and 1 that
determines the importance of future rewards in the agent's
decision-making process. A discount factor of 0 means that
the agent only considers immediate rewards, while a
discount factor of 1 means that the agent values all future
rewards equally. In most cases, a discount factor between
0.9 and 0.99 is used, as it balances the importance of
immediate and future rewards. The discount factor is
usually applied to the future rewards in the value update
equations. Returns using discount factor Function is
denoted mathematically as:

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝑟𝑇 = ∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

 (3)

 Learning rate (α) is a value between 0 and 1 that
determines how much the agent updates its value estimates
based on new information. A low learning rate means that
the agent updates its value estimates slowly and is more
resistant to changes in the environment, while a high
learning rate means that the agent updates its value
estimates quickly and is more responsive to changes in the
environment. The learning rate affects how quickly the
agent converges to an optimal policy and how much it
explores the environment. A learning rate that is too high
can cause the agent to overfit to the current environment,
while a learning rate that is too low can cause the agent to
converge too slowly or get stuck in suboptimal policies.

E. Bellman Equations

 The Bellman equation is a fundamental aspect of MDP
that describes the relationship between the value function of
the current state and the value function of the next state [42].
The value function represents the expected cumulative
reward obtained by the agent over time. The Bellman
equation is defined as follows:

 Bellman proved that the optimal state value function
in a state s is equal to the action a, which gives us the
maximum possible expected immediate reward, plus the
discounted long-term reward for the next state s’ [42],
denoted mathematically as:

𝑉∗(𝑠) = max
𝑎′

∑ 𝑃𝑠𝑠′
𝑎 (𝑟(𝑠, 𝑎) + 𝛾𝑉∗(𝑠′))

𝑠′

(4)

 Bellman also proved that the optimal state-action value

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

382

function in state s and taking action a [42], denoted
mathematically as:

𝑄∗(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎 (𝑟(𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄∗(𝑠′, 𝑎′))

𝑠′

(5)

F. Value Functions

 Two types of value functions are commonly used in
MDP: state-value function (V(s)) and action-value function
(Q(s,a)).. On the other hand, the value function or state-
value function represents the expected cumulative reward
obtained by the agent starting from state s. Value Function
is denoted mathematically as:

𝑉(𝑠) = 𝐄 [∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

] (6)

 Q-Value (Q-Function) or action-value function
represents the expected cumulative reward obtained by the
agent starting from state s, taking action a and following the
optimal policy thereafter [42]. Q-Function is denoted
mathematically as:

𝑄(𝑠, 𝑎) = 𝐄 [∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

] (7)

 The advantage function quantifies how much a
particular action, given a particular situation, is a good or
bad decision, or simply calculating what is the advantage of
selecting a certain action from a certain state. Advantage
function is denoted mathematically as:

𝐴(𝑠, 𝑎) = 𝐄[𝑄(𝑠, 𝑎) − 𝑉(𝑠)] (8)

G. Policy Iteration and value iterations

 Policy iteration and value iteration are two widely
used algorithms for solving MDPs [42]. Policy iteration is
an iterative algorithm that involves two main steps: policy
evaluation and policy improvement. In the policy evaluation
step, the value function is computed for a given policy,
while in the policy improvement step, the policy is updated
to be more greedy with respect to the computed value
function. The process of policy evaluation and policy
improvement is repeated until the optimal policy is found.
On the other hand, value iteration is a one-step lookahead
algorithm that updates the value function iteratively until it
converges to the optimal value function [42].

 The policy is the probability of taking action a given
the state s during the timestep t, denoted mathematically as:

𝜋(𝑎, 𝑠) = Pr(𝑎𝑡 = 𝑎 | 𝑠𝑡 = 𝑠) (9)

Below are two examples for better intuition of policy in RL
implementations:

Fig. 4. Mario in the state st, and the agent have 3 actions a1, a2, and a3, and

policy that calculate the probability of actions given the state st and will

result Mario in 3 new possible states. (Example of state-action-policy

correlation in Super-Mario-Bros)

Fig. 5. While the case is same with the Mario example, the safety and cost of

training are very different. (state-action-policy correlation in

autonomous vehicle)

TABLE II. Examples of RL components in Autonomous Driving
and Videogame Environment

Autonomous Driving Super-Mario-Bros

States

- Imagery acquired from

camera.

States

- Imagery acquired from

screen.

Actions:

- Brake levels

- Acceleration levels

- Coupling levels

- Gear actions

- Steering movement

Action:

- No Operation

- Left

- Right

- Up

- Down

- A

- B

Rewards:

- Distance achieved
Rewards:

- Score Achieved

- Completed a level

 The inputs in autonomous driving for RL are
continuous, while the inputs in Atari Library environment
are discrete. Here are some points to consider when
discussing the inputs for RL in autonomous driving.

 Steering movement in Autonomous Driving is not a
simple left or right action, it commonly records how many
degrees in spins left or right. So, steering itself has so many
actions state, considering full degree of steering spin. This

(st)

π(a1|st)

π(a2|st)

π(a3|st)

Cliff A (st)

Turn Right

π(a3|st)

Keep Straight

π(a2|st)
Turn Left

π(a1|st)

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

383

is also true for how deep the brake is pushed, how deep the
coupling pushed. So, these actions are considered
continuous.

 But in Atari Library, the action space is considered
small and discrete, as it is clear how relatively small options
of actions the agent can take.

H. Model-based Reinforcement Learning

 Model-Based RL is a popular method in the field of
RL that aims to learn the underlying dynamics of a system
and use this information to optimize an agent's actions.

 The first step in Model-Based RL is to learn the
dynamics model of the environment, which involves
estimating the transition probabilities and reward function
for each state-action pair. One popular approach for learning
the dynamics model is through supervised learning, where
the model is trained on a dataset of state-action pairs and
their corresponding next states and rewards. Another
approach is to use unsupervised learning techniques such as
autoencoders or generative adversarial networks.

 Once the dynamics model is learned, it can be used for
planning. One common approach is to use a search
algorithm such as Monte Carlo tree search to explore the
state space and find the optimal policy. Another approach is
to use dynamic programming techniques such as value
iteration or policy iteration [42].

 One key advantage of Model-Based RL is that it can
be more sample-efficient than model-free RL methods [42].
This is because the agent can use the learned dynamics
model to simulate the environment and generate training
data, rather than relying on trial-and-error exploration.
However, Model-Based RL methods require an accurate
and reliable model of the environment, which can be
challenging to obtain in complex and noisy systems.

Fig. 6. The agent consists of RL algorithm, policy and internal model from

simulated experience. The internal model enables the agent to predict

best action in new situations using the internal model (Illustration of

Model-Based RL)

I. Model-Free Reinforcement Learning

 Model-free RL is a branch of RL that relies on trial and
error to learn the optimal action policy without explicitly
modeling the underlying dynamics of the environment [42].

There are several popular key methods and algorithms used
in model-free RL, such as Monte Carlo (MC) method,
Temporal Difference (TD) method, Q-Learning, Deep Q-
Learning and SARSA.

 Monte Carlo (MC) methods are a type of model-free
RL algorithm that estimates the value of a state or state-
action pair by sampling returns from the environment [42].
MC methods are simple and effective but suffer from high
variance and require episodes to terminate, making them
impractical in many scenarios.

 Temporal Difference (TD) methods are another type
of model-free RL algorithm that use bootstrapping to update
value estimates based on the difference between the
predicted and actual rewards [42]. TD methods are more
efficient than MC methods and can learn online but are
sensitive to initial conditions and can be unstable.

 Q-learning is a popular TD-based algorithm that learns
the optimal Q-values for state-action pairs by iteratively
updating a Q-table using the Bellman equation [51]. Q-
learning is simple, effective, and can handle large state and
action spaces. However, it requires significant exploration
and can converge slowly in some environments [29]. the
update rule of Q-Learning is denoted mathematically as:

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎)
(10)

 Deep Q-learning on the other hand, is a recent
development in RL, combines Q-learning with deep neural
networks to handle high-dimensional state spaces [29, 30].
Deep Q-learning has been successfully applied to complex
environments such as Atari games and robotics control [25,
30]. However, it is prone to overestimation and instability
due to the non-stationarity of the target Q-values [47].

 SARSA (state-action-reward-state-action) is another
TD-based algorithm that updates Q-values based on the
state, action, reward, and next state, action pairs. SARSA is
less prone to diverge than Q-learning, but it can be slower
to converge [42].

Fig. 7. Unlike Model-Based RL, Model-Free RL doesn’t have an internal

model, so the agent can only predict best action based on its real

experiences. For new situations, it will be explored through trial and

error. (Illustration of Model-Free RL)

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

384

J. Policy Gradient Methods

 Policy gradient methods optimize the policy function
directly to maximize the expected return and are a popular
class of RL algorithms [44]. The policy function maps states
to actions and defines the behavior of the agent in the
environment. This literature review provides an overview of
the policy gradient methods and their applications in solving
RL problems.

 Policy gradient methods have gained popularity in
recent years due to their ability to learn complex policies for
high-dimensional and continuous action spaces. Actor-critic
methods [22] and Trust Region Policy Optimization (TRPO)
[37] are some of the most widely used policy gradient
algorithms. The future research directions include
improving the sample efficiency and convergence rate of
the algorithms, developing new algorithms that can handle
uncertainty and partial observability, and exploring the
applications of policy gradient methods in multi-agent and
hierarchical RL problems.

 Actor-critic methods combine the policy gradient and
value function approximation techniques [44]. The actor is
responsible for learning the policy function and the critic is
responsible for estimating the state-value or the action-value
function [22]. The critic provides feedback to the actor by
estimating the advantage function, which is the difference
between the actual return and the estimated value function.
The advantage function is used to compute the policy
gradient, which is then used to update the policy parameters.

 TRPO is a policy gradient algorithm that ensures
monotonic improvement of the policy by restricting the step
size of the policy update [37]. The TRPO algorithm
computes the policy update using the conjugate gradient
method subject to a constraint on the maximum step size.
The constraint ensures that the new policy is close to the old
policy and provides stability to the optimization process
[37].

K. Exploration and Exploitation

 Exploration and exploitation are two critical concepts
in RL. Exploration is the process of trying out new actions
in order to learn more about the environment and potentially
discover more rewarding strategies.

 Exploitation is the process of maximizing reward by
using actions that are known to be effective. Striking the
right balance between exploration and exploitation is key to
achieving optimal performance in RL. If an agent explores
too little, it may get stuck in a suboptimal solution. If it
explores too much, it may waste too much time and
resources in trying out different actions, this is also known
as exploration exploitation dilemma [42].

 The epsilon-greedy strategy is a simple exploration
strategy in which the agent chooses the action with the
highest estimated value with probability 1-epsilon, and a

random action with probability epsilon. The epsilon
parameter controls the degree of exploration, with higher
epsilon values leading to more exploration and lower values
leading to more exploitation [42].

L. Safe Reinforcement Learning (Safe-RL)

 RL has shown significant promise in solving complex
decision-making problems in various domains, ranging
from robotics and gaming to healthcare and finance [30, 40].
However, in real-world applications, the trial-and-error
process involved in RL can lead to unsafe and undesirable
behaviors that could cause harm or damage. Therefore,
there is a growing need for safe RL algorithms that can
ensure safe exploration and optimize rewards while
satisfying constraints [1].

 One of the major challenges in safe RL is exploring an
environment while ensuring safety. In traditional RL,
exploration is often performed through random actions or
using heuristics that do not guarantee safety. Safe
exploration aims to develop exploration strategies that are
safe and optimal [3]. Several approaches have been
proposed in the literature, including using safety constraints,
learning safety policies, and employing uncertainty-based
exploration strategies.

 Safe RL faces the critical challenge of guaranteeing
the agent's compliance with safety constraints. The safety
constraints can be physical, social, and legal. Constraint
satisfaction approaches have been proposed to tackle this
challenge by integrating the constraints into the RL
framework as either soft or hard constraints. Soft constraints
allow the agent to violate them to achieve optimal
performance, whereas hard constraints must be met at all
times. To this end, several methods have been proposed,
such as penalizing undesired behavior through modifying
the reward function or applying constrained optimization
techniques to optimize the policy under the constraints.
Studies have shown that these methods have successfully
implemented safe RL systems in various domains such as
healthcare, robotics, and gaming [3].

 Reward shaping is a technique utilized in safe RL to
modify the reward function to encourage safe and desirable
behavior while discouraging unsafe or undesired actions.
The reward function can be tailored to incorporate various
safety criteria, such as collision avoidance, social norms, or
legal constraints. Expert knowledge-based techniques or
inverse RL methods have been proposed in the literature for
shaping the reward function. Researchers have proposed
using an inverse RL approach for the safe navigation of
autonomous vehicles, and a safe RL method using expert
knowledge for autonomous UAV navigation.

 There have been several successful applications of
safe RL in various domains. For instance, safe RL has been
applied in robotics for safe control of autonomous robots, in
gaming for developing safe and fair game-playing agents,
and in healthcare for developing personalized treatment

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

385

plans while ensuring patient safety. Case studies in safe RL
[13, 17, 23, 24] provide valuable insights into the practical
challenges and solutions for safe RL in real-world
applications.

III. METHODOLOGY

In this chapter, we will outline the methodologies for this
research. First, we will write in detail about the experimental
setup, specifications and environment used for this research.
This will include the specific RL algorithms and frameworks
utilized, as well as the specific tasks and scenarios used to
evaluate the effectiveness of safe exploration techniques.

Next, I will describe the metrics and evaluation methods
used to assess the performance of the agents. This will include
measures of learning efficiency, safety, and overall
performance, as well as any relevant benchmarks or baselines
used for comparison.

A. Experimental setup

 The experiments are simulated in a laptop with Intel
Core i7-8650 CPU@1.9GHz (8CPU), 16GB RAM without
graphic card.

 The experiment is performed in Windows11 22H2
build 22621.1265, programming IDE using Visual Studio
Code (VSCode) v1.76.2 with Python extension, Python
v3.7.9 [34] for the programming language, and Visual
Studio Build Tools 2022 with C++ Desktop Development
workload for handling NES builds.

 Two virtual environments will be created in VSCode,
DDQN environment, and safety-constrained environment.
In each environment stable_baselines3,
gym_super_mario_bros and nes_py, will be installed as
baseline packages.

 Within stable_baselines3, the main component that I
will be using for this research is gym (OpenAI Gym [10]),
which is a toolkit that provides environments and utilities
for the process of developing and measuring RL algorithms
performance [40]. It provides a variety of environments
(called "gyms") that simulate different kinds of RL
problems, such as controlling a robot arm or playing a game.
This includes a standardized interface for interacting with
the environments, allowing researchers to easily develop
and test RL algorithms. It also includes a set of benchmark
tasks and metrics for evaluating the performance of RL
algorithms. One advantage of gym is that it allows
researchers to easily compare the performance of different
RL algorithms on the same tasks. This can help identify the
strengths and weaknesses of different algorithms and can
guide future research on RL. Another benefit is that the gym
offers a wide range of scenarios, such as traditional control
issues and challenging, real-world activities like playing
games. This enables academics to test RL algorithms on a
variety of issues and to investigate new RL applications.

Fig. 8. We develop the experiment above Stable-Baselines3 library,

including declaring unsafe state conditions, modifying reward function,

testing in multiple iteration., and developing performance and safety

violation measurements (Experiment Architecture)

 Super-Mario-Bros is a classic video game that is
complex enough, so it has been used for multiple testing
purposes in the field of RL. The game involves controlling
the character Mario as he runs and jumps through levels,
collecting coins and avoiding obstacles. And algorithms can
be trained to play Super-Mario-Bros by receiving rewards
for completing levels and avoiding obstacles, and adjusting
their actions based on these rewards. This allows the
algorithms to learn the best strategies for playing the game
and achieving a high score. Super-Mario-Bros environment
is a challenging and complex problem. The game has a large
state space, with many possible actions and many different
levels and obstacles. This makes it an ideal environment for
testing the capabilities of RL algorithms.

 In this research, the gym_super_mario_bros library
will be set using ‘SuperMarioBros-1-1-v0’ environment,
and the actions will be using ‘SIMPLE_MOVEMENT’ that
contains 7 actions including [NoOp], [Right], [Right+A],
[Right+B], [Right+A+B], [A], [Left].

Fig. 9. We perform our experiments on Windows machine, using Python as

programming language, and VSCode as code editor. We use Stable-

Baselines3 to provision our base DDQN algorithm, and gym-super-

mario-bros as the RL environment. (Hardware-Software Architecture)

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

386

B. RL Algorithms

Fig. 10. Current categorization of RL algorithms, source:

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html (RL

algorithms)

 This experiment is using Double Deep Q-Network
(DDQN) as the leading algorithms in RL field. Then I will
develop safety constraints, to integrate safety into the
algorithm.

 DDQN is the Q-learning method that is frequently
utilized for issues with vast or continuous action spaces
[39]. This is because DDQN uses a technique called double
Q-learning to reduce the overestimation of action values,
which can be a problem in these types of environments.
Some specific applications where DDQN has been shown
to be effective includes, playing games with high-
dimensional or continuous action spaces, such as real-time
strategy games or 3D simulations, learning control policies
for complex systems with many possible actions, such as
power grids or traffic networks, and solving challenging
control problems in robotics or other physical systems.

 Integrating safety constraints to an algorithm for
integrating safety of RL during training and implementation
is introduced in [37]. In RL, incorporating safety constraints
into the learning process is crucial for training safe and
reliable agents. The approach that will be used to ensure
safety in this research is through the use of modified
rewards. These modified rewards can be designed to
discourage the agent from taking unsafe actions or entering
unsafe states. For instance, a negative reward can be given
for performing an action that leads to death or damage to the
player character. This incentivizes the agent to prioritize
staying alive and avoiding dangerous situations. By
incorporating such safety constraints using modified
rewards, RL agents can be trained to achieve optimal
rewards while staying within safe and acceptable behavior.

C. Selection of training iteration quantity

 The number of iterations required for training an agent
depends on several factors such as the complexity of the
environment, the size of the action and state spaces, and the
desired level of performance. It is generally recommended
to start with a smaller number of iterations and gradually
increase them to achieve better performance.

 In my research, since I am comparing the performance
of different algorithms and measuring safety violations, it is
important to have a sufficient number of iterations to allow
for a fair comparison. A good starting point would be to use
several iterations commonly used in the literature [4,5,41]
for similar tasks, such as 100k or 500k.

 I will also perform a preliminary experiment with a
smaller number of iterations to get an idea of the model's
performance and safety violations. Based on the results, I
will decide if more iterations are necessary to achieve the
desired level of performance and safety. However, I always
consider that increasing the number of iterations will also
increase the computational resources required for training.
So, I would also consider the available resources when
deciding on the number of iterations.

D. Metrics and Evaluation

 In this research, maximum reward and safety
violations are considered as the key evaluation metrics. The
maximum reward is the primary objective of RL algorithms,
as it measures how well the agent can achieve the task or
complete the game.

 Safety violations, on the other hand, measure the
frequency of unsafe actions or states that the agent
encounters during training and exploration.

 This metric is essential to ensure the safety of the agent
and the environment in which it operates. By considering
these two-evaluation metrics, we can evaluate the
performance of the RL algorithms and make informed
decisions on selecting the best algorithm for the task at
hand.

IV. EXPERIMENT

We performed some experiments to check if RL agent can

show some human-level awareness if the algorithm is

incorporated with safety constraints. We also investigated if the

performance of RL-agents in obtaining optimal rewards

impacted by the safety constraints.

We initially trained RL agents using the leading RL

algorithms, which is Double Deep Q-Network (DDQN),

created models, and evaluated their performance in terms of

reward achievements and safety violations. We also compared

these performances when trained for different numbers of

iterations, ranging from 100k to 10 million iterations.

To evaluate the impact of safety constraints on the agent’s

capability in getting optimal rewards, we then trained the agent

using the safety-constrained algorithm. We evaluated the

performance of the agent using same measurements with

DDQN experiments and compared them with the previously

trained agents without safety constraints.

We then collected agents' performance data, including the

number of times they successfully completed each level, their

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

387

average rewards per episode, and their total safety violations.

We used these metrics to evaluate the performance of the agents

and compare them across different algorithms and training

iterations.

These experiments allowed us to understand several

implications for implementing safety constraints for RL in the

Super-Mario-Bros environment.

A. Atari Library

The gym_super_mario_bros environment is a

collection of Super-Mario-Bros games for the Nintendo

Entertainment System (NES) platform, which have been

adapted as OpenAI Gym environments.

The game consists of several components, including

Mario as the character representation of the RL agent, who

is controlled by the agent using actions such as jumping and

moving left or right. The enemies, which are the characters

that Mario must avoid or defeat to progress through the

level. The obstacles, that are the objects that Mario must

navigate around or through to progress through the level,

such as pits, walls, and pipes. Power-ups, which are special

items that Mario can collect to enhance his abilities, include

mushrooms, which increase Mario's size and strength, and

fire flowers, which give Mario the ability to shoot fireballs.

Last are coins, which are collectible items that provide

points and extra lives when enough are collected.

The action space for the gym_super_mario_bros

environment consists of a set of discrete actions that can be

taken by the agent. These actions include moving right,

moving left, jumping, jumping while moving right, jumping

while moving left, running while moving right, running

while moving left, ducking, doing nothing. And the action

spaces are grouped into RIGHT_ONLY,

SIMPLE_MOVEMENT and COMPLEX_MOVEMENT.

The reward function in the gym_super_mario_bros

environment is based on the score that the agent receives

while playing the game. The score is increased as the agent

completes the level, collects coins, and defeats enemies. The

score is decreased every second timer passes so the agent

gets more rewards to progress through the level quickly and

efficiently while avoiding enemies and obstacles. In

addition, the agent receives a penalty for losing lives, which

encourages the agent to play cautiously and avoid

unnecessary risks. While this penalty may represent safety

concerns, we want to specifically set that falling into pit is

the catastrophic state that should be avoided.

B. Development of Safety Violation Definition and Measures

TABLE I. Pseudocode of our safety violation measurement

Algorithm 1: Safety Violation Measurement

Input: y_pos: mario y position, is_dying flag, is_dead

flag

Output: sv: safety violation, nsv: non-safety violation

1: initialize

2: while conditions do

3: if mario is dead with y_pos below ground do

4: sv+=1

5: else

6: nsv+=1

7: end if

8: accumulate sv and nsv

9: end while

10: output sv and nsv accumulation

During the experiments, it was discovered that the

safety violation measurements for the DDQN algorithm

were not readily available in the Stable Baselines3 library.

As we also decided to represent falling into pit as the

catastrophic state, a customized measurement is needed. As

a result, the development of these measurements was

necessary to evaluate the performance of the agents in terms

of safety. To accomplish this, 100k iteration models were

analyzed to identify potentially unsafe actions or states. We

discovered that falling into pit is detected when Mario was

either in a “dead” or “dying” status, and the y coordinates is

below 250 pixels. Based on these analyses, a set of safety

violation measurements was developed as below:

These measurements are applied to the agents trained

using DDQN algorithms and will record the balance of

safety performance and reward achievements of the agents.

And will be used to compare the overall performance of

each algorithm in each iteration group.

C. Developing DDQN agents

We developed DDQN models using the stable-

baselines3 library. Both models were trained for a range of

iterations, from 100k, 500k, 1 million, 5 million and 10

million, using the same hyperparameters and reward

function. The models were evaluated based on their average

rewards and average safety violations, with safety violation

defined as the number of times the agent made an unsafe

action, in this case falling into a pit. The performance of the

models was compared to determine which algorithm and

iteration achieved optimal results in terms of reward and

safety. The process of training the algorithm is around 3

weeks, 24 hours per day. This long duration of training

mainly caused by the Pytorch that can only utilizes CPU

hardware capability to perform matrix multiplication due to

our hardware limitations, instead of using GPU that can do

matrix multiplication instantly like rendering a game

graphics.

Then we finally developed a safety-constrained

algorithm for comparison. The generated safety-constrained

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

388

models were trained using a similar process as the other

models, but with additional safety constraints incorporated

into the training process. Specifically, we added constraints

to the optimization process to ensure that the agent did not

perform unsafe actions during training. This was

accomplished by penalizing the agent for taking unsafe

actions and adjusting the reward function to prioritize safety

over reward maximization. See pseudocode below:

The process of training the constrained algorithm is

also around 3 weeks, 24 hours per day but slightly longer

due to additional calculation for the modified rewards

function. With the same causes due related with hardware

capability for matrix multiplication.

TABLE II. Pseudocode of our safety constrained algorithm

Algorithm 2: Safety-Constrained RL Algorithm

Input: RL algorithm M, Reward r

Output: Constrained_Reward

1: initialize M, modified reward function modreward

2: while iteration running do

3: action = predict(observation)

4: new_observation, reward = step(action)

5: reward = modreward(reward)

6: end while

D. Comparison of the performance of the algorithms

 After we created DDQN model and safety constrainer
DDQN model with same Super-Mario-Bros environment,
we then evaluated the performance of the created models,
both safety-constrained models in terms of their safety
violations and reward levels and compared them to the non-
constrained DDQN models. We run a 100-episodes
evaluation for both DDQN and our model, with the selected
iterations, and resulted as below:

Fig. 11. The 1m iteration resulted in average reward of 700.2, reward standard

deviation of 386.3, failures due to safety violation by 27, and failures by

non-safety violation by 73. The 5m iteration resulting in an average

reward of 2755.5, reward standard deviation of 443.8, failures due to

safety violation by 24, and failures by non-safety violation by 29. The

10m iteration resulted in an average reward of 2637.5, reward standard

deviation of 761.7, failures due to safety violation by 18, and failures by

non-safety violation by 20. (DDQN upper-bound iteration experiment

results)

 1 million timestep:

Episode: 1 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 0 | total rewards: 1355.0 | total steps: 127

Episode: 2 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 1 | total rewards: 682.0 | total steps: 46

Episode: 3 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 2 | total rewards: 828.0 | total steps: 89

Episode: 4 | dead by falling = +1 : Total: 2 | dead by others = +0 : Total: 2 | total rewards: 1370.0 | total steps: 89

Episode: 5 | dead by falling = +1 : Total: 3 | dead by others = +0 : Total: 2 | total rewards: 1082.0 | total steps: 88

Episode: 6 | dead by falling = +1 : Total: 4 | dead by others = +0 : Total: 2 | total rewards: 1084.0 | total steps: 101

Episode: 7 | dead by falling = +0 : Total: 4 | dead by others = +1 : Total: 3 | total rewards: 637.0 | total steps: 54

Episode: 8 | dead by falling = +0 : Total: 4 | dead by others = +1 : Total: 4 | total rewards: 1458.0 | total steps: 95

Episode: 9 | dead by falling = +0 : Total: 4 | dead by others = +1 : Total: 5 | total rewards: 759.0 | total steps: 121

Episode: 10 | dead by falling = +0 : Total: 4 | dead by others = +1 : Total: 6 | total rewards: 666.0 | total steps: 80

…

…

…

Episode: 98 | dead by falling = +0 : Total: 27 | dead by others = +1 : Total: 71 | total rewards: 242.0 | total steps: 26

Episode: 99 | dead by falling = +0 : Total: 27 | dead by others = +1 : Total: 72 | total rewards: 656.0 | total steps: 48

Episode: 100 | dead by falling = +0 : Total: 27 | dead by others = +1 : Total: 73 | total rewards: 250.0 | total steps: 21

(700.2, 386.33992804264994, 27, 73)

……

5 million timestep:

Episode: 1 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 1 | total rewards: 2810.0 | total steps: 1003

Episode: 2 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 2 | total rewards: 2362.0 | total steps: 1003

Episode: 3 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 2 | total rewards: 3105.0 | total steps: 156

Episode: 4 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 3 | total rewards: 2890.0 | total steps: 1003

Episode: 5 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 3 | total rewards: 3116.0 | total steps: 689

Episode: 6 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 3 | total rewards: 2431.0 | total steps: 119

Episode: 7 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 4 | total rewards: 2719.0 | total steps: 140

Episode: 8 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 5 | total rewards: 2938.0 | total steps: 1003

Episode: 9 | dead by falling = +0 : Total: 1 | dead by others = +0 : Total: 5 | total rewards: 3109.0 | total steps: 161

Episode: 10 | dead by falling = +1 : Total: 2 | dead by others = +0 : Total: 5 | total rewards: 2431.0 | total steps: 133

…

…

…

Episode: 98 | dead by falling = +0 : Total: 24 | dead by others = +0 : Total: 27 | total rewards: 3107.0 | total steps: 178

Episode: 99 | dead by falling = +0 : Total: 24 | dead by others = +1 : Total: 28 | total rewards: 2724.0 | total steps: 146

Episode: 100 | dead by falling = +0 : Total: 24 | dead by others = +1 : Total: 29 | total rewards: 2330.0 | total steps: 1003

(2755.51, 443.81472474445906, 24, 29)

……

10 million timestep:

Episode: 1 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 0 | total rewards: 3098.0 | total steps: 204

Episode: 2 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 1 | total rewards: 2554.0 | total steps: 1003

Episode: 3 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 1 | total rewards: 2426.0 | total steps: 428

Episode: 4 | dead by falling = +0 : Total: 1 | dead by others = +0 : Total: 1 | total rewards: 3116.0 | total steps: 147

Episode: 5 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 2 | total rewards: 2138.0 | total steps: 1003

Episode: 6 | dead by falling = +0 : Total: 1 | dead by others = +0 : Total: 2 | total rewards: 3099.0 | total steps: 148

Episode: 7 | dead by falling = +0 : Total: 1 | dead by others = +0 : Total: 2 | total rewards: 3094.0 | total steps: 157

Episode: 8 | dead by falling = +1 : Total: 2 | dead by others = +0 : Total: 2 | total rewards: 2426.0 | total steps: 390

Episode: 9 | dead by falling = +0 : Total: 2 | dead by others = +0 : Total: 2 | total rewards: 3101.0 | total steps: 166

Episode: 10 | dead by falling = +0 : Total: 2 | dead by others = +0 : Total: 2 | total rewards: 3097.0 | total steps: 669

…

…

…

Episode: 98 | dead by falling = +0 : Total: 17 | dead by others = +0 : Total: 20 | total rewards: 3108.0 | total steps: 152

Episode: 99 | dead by falling = +1 : Total: 18 | dead by others = +0 : Total: 20 | total rewards: 2431.0 | total steps: 126

Episode: 100 | dead by falling = +0 : Total: 18 | dead by others = +0 : Total: 20 | total rewards: 3102.0 | total steps: 156

(2637.49, 761.6797160880681, 18, 20)

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

389

Fig. 12. The 100k iteration experiment resulting in average reward of 678.7,

reward standard deviation of 275.1, failures due to safety violation by

24, and failures by non-safety violation by 76. The 500k iteration

resulted in an average reward of 1151.5, reward standard deviation of

434.6, failures due to safety violation by 23, and failures by non-safety

violation by 77. (DDQN lower-bound iterations experiment results)

And for ours:

Fig. 13. The 1m iteration resulting in average reward of 921.5, reward

standard deviation of 380.7, failures due to safety violation by 24, and

failures by non-safety violation by 76. The 5m iteration resulting in an

average reward of 2331.6, reward standard deviation of 529.9, failures

due to safety violation by 18, and failures by non-safety violation by 64.

The 10m iteration resulted in an average reward of 2704, reward

standard deviation of 843.8, failures due to safety violation by 2, and

failures by non-safety violation by 27. (Ours upper-bound iterations

experiment results)

 100k timestep:

Episode: 1 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 1 | total rewards: 747.0 | total steps: 76

Episode: 2 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 2 | total rewards: 655.0 | total steps: 57

Episode: 3 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 2 | total rewards: 1097.0 | total steps: 106

Episode: 4 | dead by falling = +1 : Total: 2 | dead by others = +0 : Total: 2 | total rewards: 1093.0 | total steps: 93

Episode: 5 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 3 | total rewards: 256.0 | total steps: 20

Episode: 6 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 4 | total rewards: 648.0 | total steps: 60

Episode: 7 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 5 | total rewards: 658.0 | total steps: 98

Episode: 8 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 6 | total rewards: 642.0 | total steps: 53

Episode: 9 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 7 | total rewards: 242.0 | total steps: 20

Episode: 10 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 8 | total rewards: 250.0 | total steps: 21

…

…

…

Episode: 98 | dead by falling = +1 : Total: 23 | dead by others = +0 : Total: 75 | total rewards: 1088.0 | total steps: 115

Episode: 99 | dead by falling = +1 : Total: 24 | dead by others = +0 : Total: 75 | total rewards: 1086.0 | total steps: 101

Episode: 100 | dead by falling = +0 : Total: 24 | dead by others = +1 : Total: 76 | total rewards: 772.0 | total steps: 73

(678.65, 275.0741490943851, 24, 76)

……

500k timestep:

Episode: 1 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 0 | total rewards: 1380.0 | total steps: 108

Episode: 2 | dead by falling = +1 : Total: 2 | dead by others = +0 : Total: 0 | total rewards: 1370.0 | total steps: 74

Episode: 3 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 1 | total rewards: 1468.0 | total steps: 74

Episode: 4 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 2 | total rewards: 759.0 | total steps: 69

Episode: 5 | dead by falling = +1 : Total: 3 | dead by others = +0 : Total: 2 | total rewards: 1089.0 | total steps: 76

Episode: 6 | dead by falling = +0 : Total: 3 | dead by others = +1 : Total: 3 | total rewards: 789.0 | total steps: 54

Episode: 7 | dead by falling = +0 : Total: 3 | dead by others = +1 : Total: 4 | total rewards: 1613.0 | total steps: 86

Episode: 8 | dead by falling = +0 : Total: 3 | dead by others = +1 : Total: 5 | total rewards: 622.0 | total steps: 45

Episode: 9 | dead by falling = +0 : Total: 3 | dead by others = +1 : Total: 6 | total rewards: 1476.0 | total steps: 88

Episode: 10 | dead by falling = +1 : Total: 4 | dead by others = +0 : Total: 6 | total rewards: 1088.0 | total steps: 79

…

…

…

Episode: 98 | dead by falling = +0 : Total: 22 | dead by others = +1 : Total: 76 | total rewards: 629.0 | total steps: 29

Episode: 99 | dead by falling = +1 : Total: 23 | dead by others = +0 : Total: 76 | total rewards: 1362.0 | total steps: 75

Episode: 100 | dead by falling = +0 : Total: 23 | dead by others = +1 : Total: 77 | total rewards: 1735.0 | total steps: 95

(1151.48, 434.55769421332303, 23, 77)

 1 million timestep:

Episode: 1 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 1 | total rewards: 637.0 | total steps: 48

Episode: 2 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 2 | total rewards: 627.0 | total steps: 30

Episode: 3 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 2 | total rewards: 1077.0 | total steps: 141

Episode: 4 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 3 | total rewards: 1193.0 | total steps: 65

Episode: 5 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 4 | total rewards: 858.0 | total steps: 73

Episode: 6 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 5 | total rewards: 771.0 | total steps: 57

Episode: 7 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 6 | total rewards: 626.0 | total steps: 33

Episode: 8 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 7 | total rewards: 618.0 | total steps: 29

Episode: 9 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 8 | total rewards: 653.0 | total steps: 43

Episode: 10 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 9 | total rewards: 638.0 | total steps: 40

…

…

…

Episode: 98 | dead by falling = +0 : Total: 24 | dead by others = +1 : Total: 74 | total rewards: 629.0 | total steps: 36

Episode: 99 | dead by falling = +0 : Total: 24 | dead by others = +1 : Total: 75 | total rewards: 616.0 | total steps: 29

Episode: 100 | dead by falling = +0 : Total: 24 | dead by others = +1 : Total: 76 | total rewards: 779.0 | total steps: 61

(921.54, 380.73600880400056, 24, 76)

……

5 million timestep:

Episode: 1 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 1 | total rewards: 1183.0 | total steps: 60

Episode: 2 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 2 | total rewards: 2938.0 | total steps: 1003

Episode: 3 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 2 | total rewards: 3117.0 | total steps: 417

Episode: 4 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 3 | total rewards: 2708.0 | total steps: 142

Episode: 5 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 3 | total rewards: 2429.0 | total steps: 148

Episode: 6 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 4 | total rewards: 2554.0 | total steps: 1003

Episode: 7 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 5 | total rewards: 784.0 | total steps: 57

Episode: 8 | dead by falling = +1 : Total: 2 | dead by others = +0 : Total: 5 | total rewards: 2427.0 | total steps: 853

Episode: 9 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 6 | total rewards: 2314.0 | total steps: 1003

Episode: 10 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 7 | total rewards: 2186.0 | total steps: 1003

…

…

…

Episode: 98 | dead by falling = +1 : Total: 18 | dead by others = +0 : Total: 62 | total rewards: 2430.0 | total steps: 952

Episode: 99 | dead by falling = +0 : Total: 18 | dead by others = +1 : Total: 63 | total rewards: 2330.0 | total steps: 1003

Episode: 100 | dead by falling = +0 : Total: 18 | dead by others = +1 : Total: 64 | total rewards: 2030.0 | total steps: 1003

(2331.58, 529.9094296198173, 18, 64)

……

10 million timestep:

Episode: 1 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 1 | total rewards: 2707.0 | total steps: 143

Episode: 2 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 1 | total rewards: 3096.0 | total steps: 178

Episode: 3 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 1 | total rewards: 3103.0 | total steps: 160

Episode: 4 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 1 | total rewards: 3107.0 | total steps: 203

Episode: 5 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 2 | total rewards: 250.0 | total steps: 17

Episode: 6 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 2 | total rewards: 3117.0 | total steps: 156

Episode: 7 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 2 | total rewards: 3116.0 | total steps: 159

Episode: 8 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 2 | total rewards: 3099.0 | total steps: 162

Episode: 9 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 2 | total rewards: 3108.0 | total steps: 145

Episode: 10 | dead by falling = +0 : Total: 0 | dead by others = +0 : Total: 2 | total rewards: 3116.0 | total steps: 152

…

…

…

Episode: 98 | dead by falling = +0 : Total: 2 | dead by others = +0 : Total: 27 | total rewards: 3110.0 | total steps: 408

Episode: 99 | dead by falling = +0 : Total: 2 | dead by others = +0 : Total: 27 | total rewards: 3116.0 | total steps: 153

Episode: 100 | dead by falling = +0 : Total: 2 | dead by others = +0 : Total: 27 | total rewards: 3104.0 | total steps: 157

(2703.98, 843.7955792726103, 2, 27)

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

390

Fig. 14. The 100k iteration resulting in average reward of 629.3, reward

standard deviation of 277.4, failures due to safety violation by 20, and

failures by non-safety violation by 80. The 500k iteration resulting in an

average reward of 1001.8, reward standard deviation of 413.4, failures

due to safety violation by 19, and failures by non-safety violation by 81.

(Ours lower-bound iterations experiment results)

From the experiments, the data is compiled to get the
total rewards, total violation, and total episode completion
for each iteration, both for DDQN and our model. As we
declared that falling into a pit as a safety violation, we will
accumulate “dead by falling” into Violation variable,
mathematically expressed as below:

𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ 𝑑𝑒𝑎𝑑_𝑏𝑦_𝑓𝑎𝑙𝑙𝑖𝑛𝑔

𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠
1

𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠
 (11)

Then we accumulate the “total reward” variable into

Reward, and get the average total rewards from all episodes,
mathematically expressed as below:

𝑅𝑒𝑤𝑎𝑟𝑑 =
∑ 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑤𝑎𝑟𝑑𝑠

𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠
1

𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠
 (12)

Lastly, we extract the information about the completion

of each episode, this is where the agent didn’t die of falling
into pit or any other causes, and the “done” flag is achieved
within the episode, mathematically expressed as:

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =
∑ 1 − (𝑑𝑒𝑎𝑑_𝑏𝑦_𝑓𝑎𝑙𝑙𝑖𝑛𝑔 + 𝑑𝑒𝑎𝑑_𝑏𝑦_𝑜𝑡ℎ𝑒𝑟𝑠)𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

1

𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠
𝑥100% (13)

We calculate using above three formulas for each

iteration, from 100k, 500k, 1 million, 5 million, and 10
million for DDQN and our model, and the results are
summarized as follows:

The results indicate that a sufficiently trained DDQN
agent with 10 million iterations, can complete the stage with
62 times out of 100. And 18 safety violations out of 100.
However, when agents were trained with lower iteration
numbers, for example, the 100k iterations have 0
completion and 24 safety violations, and 500k iterations
also have 0 completion and 23 safety violations.

For our proposed safety-constrained algorithm, it is

shown that in lower iterations, the safety-constrained
algorithm has slightly lower safety violations compared to
DDQN. With safety constraints during training, the agents
were able to achieve lower safety violations while
maintaining relatively equal rewards. However, it should be
noted that incorporating safety constraints comes at the cost
of sacrificing computing resources due to additional
calculation for safety-measurement process.

The results of our experiments demonstrate the

importance of having a lot of iterations for training RL
agents, and the impact of the choice of algorithm on reward
achievements and safety violations. Additionally, the
findings highlight the significance of incorporating safety
constraints during training, especially for short iteration
agents to develop robust and Safe-RL agents.

TABLE III. Comparison of performance of DDQN and our safety-
constrained algorithm.

Iterations Parameters DDQN[19,47] Ours

100k

Reward

Violation

Completion

678.65

24

0%

629.28

20

0%

500k

Reward

Violation

Completion

1151.48

23

0%

1001.78

19

0%

1m

Reward

Violation

Completion

700.2

27

0%

921.54

24

0%

5m

Reward

Violation

Completion

2755.51

24

47%

2331

18

18%

10m

Reward

Violation

Completion

2637.49

18

62%

2703.98

2

71%

E. The Implications of the findings

 The results that are shown have some implications for
using videogame environment for the development of Safe-
RL. First, the results show the need for enough training
iterations to let the algorithm show significant performance
while maintaining low safety violations. This highlights the
importance of having large and diverse interactions with the
environment, and to consider computing capability of the

 100k timestep:

Episode: 1 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 1 | total rewards: 649.0 | total steps: 46

Episode: 2 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 2 | total rewards: 250.0 | total steps: 15

Episode: 3 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 3 | total rewards: 647.0 | total steps: 49

Episode: 4 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 4 | total rewards: 250.0 | total steps: 15

Episode: 5 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 4 | total rewards: 1068.0 | total steps: 78

Episode: 6 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 5 | total rewards: 653.0 | total steps: 45

Episode: 7 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 6 | total rewards: 636.0 | total steps: 52

Episode: 8 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 7 | total rewards: 250.0 | total steps: 15

Episode: 9 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 8 | total rewards: 651.0 | total steps: 48

Episode: 10 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 9 | total rewards: 626.0 | total steps: 52

…

…

…

Episode: 98 | dead by falling = +0 : Total: 20 | dead by others = +1 : Total: 78 | total rewards: 269.0 | total steps: 16

Episode: 99 | dead by falling = +0 : Total: 20 | dead by others = +1 : Total: 79 | total rewards: 250.0 | total steps: 15

Episode: 100 | dead by falling = +0 : Total: 20 | dead by others = +1 : Total: 80 | total rewards: 682.0 | total steps: 47

(629.28, 277.4209465775791, 20, 80)

……

500k timestep:

Episode: 1 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 1 | total rewards: 649.0 | total steps: 40

Episode: 2 | dead by falling = +0 : Total: 0 | dead by others = +1 : Total: 2 | total rewards: 644.0 | total steps: 51

Episode: 3 | dead by falling = +1 : Total: 1 | dead by others = +0 : Total: 2 | total rewards: 1376.0 | total steps: 92

Episode: 4 | dead by falling = +0 : Total: 1 | dead by others = +1 : Total: 3 | total rewards: 654.0 | total steps: 46

Episode: 5 | dead by falling = +1 : Total: 2 | dead by others = +0 : Total: 3 | total rewards: 1387.0 | total steps: 80

Episode: 6 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 4 | total rewards: 638.0 | total steps: 43

Episode: 7 | dead by falling = +0 : Total: 2 | dead by others = +1 : Total: 5 | total rewards: 1744.0 | total steps: 102

Episode: 8 | dead by falling = +1 : Total: 3 | dead by others = +0 : Total: 5 | total rewards: 1371.0 | total steps: 79

Episode: 9 | dead by falling = +0 : Total: 3 | dead by others = +1 : Total: 6 | total rewards: 682.0 | total steps: 75

Episode: 10 | dead by falling = +0 : Total: 3 | dead by others = +1 : Total: 7 | total rewards: 652.0 | total steps: 40

…

…

…

Episode: 98 | dead by falling = +0 : Total: 18 | dead by others = +1 : Total: 80 | total rewards: 633.0 | total steps: 34

Episode: 99 | dead by falling = +1 : Total: 19 | dead by others = +0 : Total: 80 | total rewards: 1377.0 | total steps: 81

Episode: 100 | dead by falling = +0 : Total: 19 | dead by others = +1 : Total: 81 | total rewards: 648.0 | total steps: 38

(1001.78, 413.43607921902515, 19, 81)

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

391

hardware to train RL agents effectively.

 Second, the results of DDQN algorithms models show
that different types of algorithms can significantly impact
safety violations.

 The balance between safety, performance and
computing resources should be carefully considered when
developing safe and robust RL agents, particularly in
environments where trial-and-error learning can cause harm
to humans.

F. Limitation of the studies

 The study on Safe-RL in the Super-Mario-Bros
environment using the safety-constrained algorithm has
some limitations that should be considered. Firstly, the
study only focused on two particular algorithms and one
game environment, which may limit the generalizability of
the results to other RL algorithms and game environments.

 Secondly, the study did not explore the impact of
different reward functions on the performance of the safety-
constrained algorithm. While the author argues that their
reward function is effective in promoting safe behavior, it is
possible that different reward functions could lead to
different results.

 Thirdly, the study did not investigate the impact of
other safety constraints, such as constraints on exploration,
on the performance of the safety-constrained algorithm.
Incorporating additional safety constraints may affect the
balance between safety and performance, and further
research is needed to investigate the trade-off between these
factors.

 Finally, the study did not consider the impact of
human players on the performance of the safety-constrained
algorithm. While the authors argue that the Super-Mario-
Bros environment is a suitable proxy for real-world
scenarios, the presence of human players may introduce
additional complexity and safety considerations that are not
present in the game environment.

G. Future directions for research

Further research is required to achieve human-level
intelligence [43], which involves developing memory
representation of a state combined with image dimensionality
reduction. Humans have a perfect image of what they see in
the first few seconds and then reduce it over time, and we
believe that this can act as a crucial step towards efficient
world modeling [18]. Given the advanced gaming field, we
can develop world models using videogame simulations
when combined with Safe-RL. Therefore, incorporating
Safe-RL in videogame environments can be a significant step
towards achieving robust and safe AI systems.

V. CONCLUSION

The research presented in this paper investigated the use of

safe reinforcement learning (RL) in a complex videogame

environment like Super-Mario-Bros The results showed that the

proposed safety-constrained algorithm was able to learn to play

the game effectively while also complying with safety

constraints and avoiding undesirable behaviors.

The results of this study have implications for the future

development of RL algorithms. The ability to perform safe RL

in complex videogame environments is a step towards using

more advanced and realistic videogame environments as

simulation platforms for RL training. This could lead to the

development of RL agents that are capable of performing

complex tasks in real-world environments.

The research also highlighted the need for further

exploration in model-based RL. Model-based RL methods can

be more effective than model-free methods at achieving safety

in RL tasks. In addition, using or adding human knowledge and

thought process into the RL agent to develop human-like

model-based RL. This could be a promising direction for

ensuring that the agent's behavior aligns with human values and

ethical principles.

Finally, the development of more sophisticated evaluation

metrics and benchmarks for RL, especially in videogame

environments, can help to provide a standardized and objective

measure of the effectiveness of different RL algorithms. This is

important for comparing the performance of different RL

algorithms and for identifying the best algorithms for specific

tasks.

REFERENCES

[1]. Achiam, J., Held, D., Tamar, A. and Abbeel, P., 2017, July.

Constrained policy optimization. In International conference on

machine learning (pp. 22-31). PMLR.

[2]. Altman, E., 1999. Constrained Markov decision processes (Vol.

7). CRC press.

[3]. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J.

and Mané, D., 2016. Concrete problems in AI safety. arXiv

preprint arXiv:1606.06565.

[4]. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R.,

Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O. and

Zaremba, W., 2017. Hindsight experience replay. Advances in

neural information processing systems, 30.

[5]. Badia, A.P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi,

A., Guo, Z.D. and Blundell, C., 2020, November. Agent57:

Outperforming the atari human benchmark. In International

conference on machine learning (pp. 507-517). PMLR.

[6]. Badia, A.P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot, B.,

Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel, A., Bolt, A.

and Blundell, C., 2020. Never give up: Learning directed

exploration strategies. arXiv preprint arXiv:2002.06038.

[7]. Bakker, B., 2001. Reinforcement learning with long short-term

memory. Advances in neural information processing systems, 14.

[8]. Berkenkamp, F., 2019. Safe exploration in reinforcement

learning: Theory and applications in robotics (Doctoral

dissertation, ETH Zurich).

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

392

[9]. Berkenkamp, F., Turchetta, M., Schoellig, A. and Krause, A.,

2017. Safe model-based reinforcement learning with stability

guarantees. Advances in neural information processing systems,

30.

[10]. Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J. and Zaremba, W., 2016. Openai gym. arXiv

preprint arXiv:1606.01540.

[11]. Broekens, J., Jacobs, E. and Jonker, C.M., 2015. A reinforcement

learning model of joy, distress, hope and fear. Connection

Science, 27(3), pp.215-233.

[12]. Brunke, L., Greeff, M., Hall, A.W., Yuan, Z., Zhou, S., Panerati,

J. and Schoellig, A.P., 2022. Safe learning in robotics: From

learning-based control to safe reinforcement learning. Annual

Review of Control, Robotics, and Autonomous Systems, 5,

pp.411-444.

[13]. Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T. and

Efros, A.A., 2018. Large-scale study of curiosity-driven learning.

arXiv preprint arXiv:1808.04355.

[14]. Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E. and

Ghavamzadeh, M., 2019. Lyapunov-based safe policy

optimization for continuous control. arXiv preprint

arXiv:1901.10031.

[15]. Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C.

and Tassa, Y., 2018. Safe exploration in continuous action spaces.

arXiv preprint arXiv:1801.08757.

[16]. Deisenroth, M.P., Faisal, A.A. and Ong, C.S., 2020. Mathematics

for machine learning. Cambridge University Press.

[17]. Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J., Yang, Y.

and Knoll, A., 2022. A review of safe reinforcement learning:

Methods, theory and applications. arXiv preprint

arXiv:2205.10330.

[18]. Hafner, D., Pasukonis, J., Ba, J. and Lillicrap, T., 2023. Mastering

Diverse Domains through World Models. arXiv preprint

arXiv:2301.04104.

[19]. Hasselt, H., 2010. Double Q-learning. Advances in neural

information processing systems, 23.

[20]. Hellaby, W.C.J.C., 1989. Learning from delayed rewards.

[21]. Jayant, A.K. and Bhatnagar, S., 2022. Model-based Safe Deep

Reinforcement Learning via a Constrained Proximal Policy

Optimization Algorithm. Advances in Neural Information

Processing Systems, 35, pp.24432-24445.

[22]. Konda, V. and Tsitsiklis, J., 1999. Actor-critic algorithms.

Advances in neural information processing systems, 12.

[23]. Ladosz, P., Weng, L., Kim, M. and Oh, H., 2022. Exploration in

deep reinforcement learning: A survey. Information Fusion.

[24]. Li, Y., 2022. Deep reinforcement learning: Opportunities and

challenges. arXiv preprint arXiv:2202.11296.

[25]. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa,

Y., Silver, D. and Wierstra, D., 2020. Continuous control with

deep reinforcement learning. US Patent, 15(217,758).

[26]. Lin, L.J., 1992. Self-improving reactive agents based on

reinforcement learning, planning and teaching. Machine learning,

8, pp.293-321.

[27]. Lipton, Z.C., Azizzadenesheli, K., Kumar, A., Li, L., Gao, J. and

Deng, L., 2016. Combating reinforcement learning's sisyphean

curse with intrinsic fear. arXiv preprint arXiv:1611.01211.

[28]. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.,

Harley, T., Silver, D. and Kavukcuoglu, K., 2016, June.

Asynchronous methods for deep reinforcement learning. In

International conference on machine learning (pp. 1928-1937).

PMLR.

[29]. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,

I., Wierstra, D. and Riedmiller, M., 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602.

[30]. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,

Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.,

Ostrovski, G. and Petersen, S., 2015. Human-level control through

deep reinforcement learning. nature, 518(7540), pp.529-533.

[31]. Nichol, A., Pfau, V., Hesse, C., Klimov, O. and Schulman, J.,

2018. Gotta learn fast: A new benchmark for generalization in rl.

arXiv preprint arXiv:1804.03720.

[32]. Pathak, D., Agrawal, P., Efros, A.A. and Darrell, T., 2017, July.

Curiosity-driven exploration by self-supervised prediction. In

International conference on machine learning (pp. 2778-2787).

PMLR.

[33]. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M. and

Dormann, N., 2021. Stable-baselines3: Reliable reinforcement

learning implementations. The Journal of Machine Learning

Research, 22(1), pp.12348-12355.

[34]. Raschka, S. and Mirjalili, V., 2019. Python machine learning:

Machine learning and deep learning with Python, scikit-learn, and

TensorFlow 2. Packt Publishing Ltd.

[35]. Ray, A., Achiam, J. and Amodei, D., 2019. Benchmarking safe

exploration in deep reinforcement learning. arXiv. arXiv preprint

arXiv:1910.01708, 7.

[36]. Schmeckpeper, K., Rybkin, O., Daniilidis, K., Levine, S. and

Finn, C., 2020. Reinforcement learning with videos: Combining

offline observations with interaction. arXiv preprint

arXiv:2011.06507.

[37]. Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P.,

2015, June. Trust region policy optimization. In International

conference on machine learning (pp. 1889-1897). PMLR.

[38]. Schulman, J., Moritz, P., Levine, S., Jordan, M. and Abbeel, P.,

2015. High-dimensional continuous control using generalized

advantage estimation. arXiv preprint arXiv:1506.02438.

[39]. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov,

O., 2017. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347.

[40]. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van

Den Driessche, G., Schrittwieser, J., Antonoglou, I.,

Panneershelvam, V., Lanctot, M. and Dieleman, S., 2016.

Mastering the game of Go with deep neural networks and tree

search. nature, 529(7587), pp.484-489.

[41]. Srinivasan, K., Eysenbach, B., Ha, S., Tan, J. and Finn, C., 2020.

Learning to be safe: Deep rl with a safety critic. arXiv preprint

arXiv:2010.14603.

[42]. Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An

introduction. MIT press.

[43]. Sutton, R.S., Bowling, M.H. and Pilarski, P.M., 2022. The Alberta

Plan for AI Research. arXiv preprint arXiv:2208.11173.

[44]. Sutton, R.S., McAllester, D., Singh, S. and Mansour, Y., 1999.

Policy gradient methods for reinforcement learning with function

approximation. Advances in neural information processing

systems, 12.

[45]. Thomas, G., Luo, Y. and Ma, T., 2021. Safe reinforcement

learning by imagining the near future. Advances in Neural

Information Processing Systems, 34, pp.13859-13869.

[46]. Thumm, J. and Althoff, M., 2022, May. Provably safe deep

reinforcement learning for robotic manipulation in human

environments. In 2022 International Conference on Robotics and

Automation (ICRA) (pp. 6344-6350). IEEE.

[47]. Van Hasselt, H., Guez, A. and Silver, D., 2016, March. Deep

reinforcement learning with double q-learning. In Proceedings of

the AAAI conference on artificial intelligence (Vol. 30, No. 1).

[48]. Van Otterlo, M. and Wiering, M., 2012. Reinforcement learning

and markov decision processes. Reinforcement learning: State-of-

the-art, pp.3-42.

[49]. Wagener, N.C., Boots, B. and Cheng, C.A., 2021, July. Safe

reinforcement learning using advantage-based intervention. In

International Conference on Machine Learning (pp. 10630-

10640). PMLR.

[50]. Wan, T. and Xu, N., 2018. Advances in experience replay. arXiv

preprint arXiv:1805.05536.

[51]. Watkins, C.J. and Dayan, P., 1992. Q-learning. Machine learning,

8, pp.279-292.

[52]. Zhang, L., Shen, L., Yang, L., Chen, S., Yuan, B., Wang, X. and

Tao, D., 2022. Penalized proximal policy optimization for safe

reinforcement learning. arXiv preprint arXiv:2205.11814.

[53]. Zhang, Y., Vuong, Q. and Ross, K., 2020. First order constrained

optimization in policy space. Advances in Neural Information

Processing Systems, 33, pp.15338-15349.

[54]. Todorov, E., Erez, T. and Tassa, Y., 2012, October. Mujoco: A

physics engine for model-based control. In 2012 IEEE/RSJ

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 378-393

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1739, Copyright ©2023

Submitted : May 21, 2023, Revised : June 9, 2023, Accepted : August 29, 2023, Published : November 6, 2023

393

international conference on intelligent robots and systems (pp.

5026-5033). IEEE.

[55]. Zhao, W., Queralta, J.P. and Westerlund, T., 2020, December.

Sim-to-real transfer in deep reinforcement learning for robotics: a

survey. In 2020 IEEE symposium series on computational

intelligence (SSCI) (pp. 737-744). IEEE.

