

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

415

Comparison Analysis of Graph Theory Algorithms

for Shortest Path Problem

Yosefina Finsensia Riti[1], Jonathan Steven Iskandar[2], Hendra[3]

Informatics Study Program, Faculty of Engineering[1], [2], [3]

Darma Cendika Catholic University, Surabaya, Indonesia

yosefina.riti@ukdc.ac.id[1], jonathan.iskandar@student.ukdc.ac.id[2], hendra@student.ukdc.ac.id[3]

Abstract— The Sumba region, Indonesia, is known for its

extraordinary natural beauty and unique cultural richness.

There are 19 interesting tourist attractions spread throughout

the area, but tourists often face difficulties in planning efficient

visiting routes. From this case, it can be solved by applying

graph theory in terms of searching for the shortest distance

which is completed using the shortest path search algorithm.

Then these 19 tourist objects are used to build a weighted graph,

where the nodes represent the tourist objects and the edges of

the graph describe the distance or travel time between these

objects. Therefore, this research aims to compare the shortest

path search algorithm with parameters to compare the shortest

distance results, algorithm complexity and execution time for

tourism in the Sumba area. The results of this research involve

a comparison of several shortest path search algorithms, with

the aim of finding the shortest distance results, algorithm

complexity, and execution time for tourism in the Sumba area.

Based on the test results of the five algorithms with the

parameters that have been prepared, and the findings show that

each algorithm has its own characteristics, the results are as

follows: Dijkstra's algorithm can be used to calculate the

shortest route for single-source and single-destination types.

This resembles the Bellman-Ford algorithm, only the Bellman-

Ford algorithm can be used simultaneously on graphs that have

negative weight values. Meanwhile, the Floyd-Warshall

algorithm is suitable for use on the all-pairs type. Then, the

Johnson Algorithm can be used to determine the shortest path

from all pairs of paths where the destination node is located in

the graph. Finally, the Ant Colony algorithm to compute from a

node to each pair of destination nodes.

Keywords— Dijkstra Algorithm, Bellman-Ford Algorithm,

Floyd-Warshall Algorithm, Johnson Algorithm, Ant Colony

Algorithm

I. INTRODUCTION

 Graph theory is one of the topics in the computer field that

is studied and is a branch of discrete mathematics [1] that

studies related graphs, namely the relationship between one

object and another object, where the connection consists of a

set of vertices/points (vertex/nodes) and sides/lines (edges)

that connect one point to another point. Graph theory is used

in studies related to relations or relationships between objects

that are implemented to solve various problem models, one

of which is the optimal path or route search problem [2-3] so

that it can minimize costs [4] and time efficiency [5],

optimization scheduling [6-8], communication network

modeling [9], and other issues [9]. Searching for the shortest

path is the process of finding a path between two vertices,

namely from the source node to the destination node in a

graph by minimizing the number of weights so that the path

with the smallest weight is obtained.

 The Sumba region is a tourist destination rich in attractive

natural and cultural tourist attractions, and 19 attractive

tourist attractions are distributed throughout the region.

However, for many tourists, the challenge often faced is to

plan efficient visits to these various tourist attractions on a

single trip. This is becoming increasingly important as their

time and resources are limited. To address this problem, this

study applied the implementation of graph theory in terms of

the shortest distance search between tourist attractions in

Sumba area through testing of several algorithms that have

often been used to solve related problems. With this effort, it

is also possible for each algorithm to perform efficiently on

what kind of graph and path models, as well as what the

advantages and disadvantages of each algorithm are. The

hope can also be a recommendation for readers to know the

most efficient algorithms for researching or solving the same

problem.

 Implementation of graph theory in the case of finding the

shortest distance can be solved using the shortest path search

algorithm, which is classified into a single source and multi-

source [10] where the single source algorithm is the shortest

path search algorithm from one source node to various other

destination nodes. These algorithms are among the Greedy

[11], Dijkstra, and Bellman-Ford algorithms. Meanwhile,

multi-source algorithms look for the shortest path by

calculating all pairs of vertices in a graph, including the Floyd

Warshall, Ant Colony, and Johnson algorithms. Several

algorithms have made it possible for tourists to visit as many

tourist attractions as possible in one visit, while minimizing

travel time.

 Some research using the Greedy algorithm includes

determining the best tour packages for tour communicatists

[12] and determining the fastest routes for public

transportation [13]. The application of Dijkstra's algorithm

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

416

includes determining the shortest path [14-21], that there is

the application of the Bellman-Ford algorithm in finding the

best path including the network [22], a comparison of the

Bellman-Ford algorithm with other algorithms such as Prim's

algorithm [23], Dijkstra [24-27]. Regarding the application of

the Floyd-Warshall algorithm in finding the shortest route,

they include [16][28]. The application of other shortest route

search algorithms such as Ant Colony includes [1][20-

21][29-30]. Meanwhile, the application of Johnson's

algorithm in finding the shortest path [6]. There are also other

studies that make comparisons between the Dijkstra,

Bellman-Ford, and Floyd-Warshall algorithms [10].

 The shortest path search algorithms that have been

mentioned have their own advantages and disadvantages

which can be measured through several parameters including,

the results of the shortest path or route given [24-25],

negative sides [26], negative cycles [26][10], the memory

allocation used [10], the complexity of the algorithm [24], as

well as the execution time required for an algorithm [26][10].

 This study has the primary purpose of testing and

comparing from five different shortest path search algorithms

in optimizing the travel of tourists in the Sumba region. This

area is a focal point because it presents its own challenges in

determining tourist attractions to visit, along with the

condition of road infrastructure that still suffers a lot of

damage. Therefore, this study will focus on a number of

relevant parameters, including shortest distance results,

algorithm complexity, and execution time.

II. METHODOLOGY

 The data used in this research is about the distance data

between tourist objects in Southwest Sumba and West

Sumba. The data is taken from google maps and consists the

distance between TMC Airport to Kita Beach, and also to

Kabisu Lobo Oro Site, Lendongara Hill, Waikelo Beach,

Kawona Beach, Karakar Indah Beach, Waikuri Lagoon,

Mandorak Beach, Tanjung Karoso Beach, Tanjung Karoso

Resort, Rotenggaro Beach, Bawana Beach, Watu Malandong

Beach, Sumba Culture House, Praijing Village, Lailiang

Beach, Rua Beach, and Mata Yangu Waterfall. The route data

was taken with the consideration of good road access, paved

and two-way without any damage.

 The following is an explanation of the initialization of the

dataset to be used. To facilitate the writing of data tables, each

location name will be represented by numbering as shown in

Table 1 of initializing variables. Then, continue with Fig. 1

that displays information about the distance values in each

row and column that have been adjusted by initializing the

location variables and distance values using units of

kilometers.

TABLE I. VARIABLE INITIALIZATION FOR DATASET

Variable

Initialization

Sumba

Regional

Destination

Variable

Initialization

Sumba

Regional

Destination

1 TMC Airport 11 Tanjung Karoso

Resort

2 Kita Beach 12 Rotenggaro

Beach

3 Kabisu Lobo

Oro Site

13 Bawana Beach

4 Lendongara Hill 14 Watu

Malandong

Beach

5 Waikelo Beach 15 Sumba Culture

House

6 Kawona Beach 16 Praijing Village

7 Karakat Indah

Beach

17 Lailiang Beach

8 Waikuri Lagoon 18 Rua Beach

9 Mandorak

Beach

19 Mata Yangu

Waterfall

10 Tanjung Karoso

Beach

Fig. 1. Distance Data between Tourist Objects

 The data above are initial data showing information on the

distance values between one point to each other obtained at

the data collection stage. The dataset will be used in the

testing process, as well as to see if a particular algorithm can

find a solution so that a point can have a smaller distance

value while also finding the shortest route between the

starting point and the destination point. The data consists of

19 location points with each distance value written with a unit

of kilometers. This study also aims to optimize the travel of

tourists in the Sumba region. This study wanted to contribute

to facilitating the determination of tourist attractions to be

visited, especially when talking about road infrastructure

conditions and sometimes there is a potential route mismatch

that certain applications can produce when they want to know

the route on their way to a location.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

417

 The algorithms used in this study include Dijkstra,

Bellman-Ford, Floyd-Warshall, Johnson, and Ant Colony

algorithms. Dijkstra's algorithm is an algorithm that is used

to find the shortest distance or route from the initial node to

the final node in a weighted graph. Dijkstra's algorithm is that

it is the most important and useful algorithm for optimal

solutions in a large class of shortest path problems [14].

Bellman-Ford algorithm can also be used to solve problems

related to the shortest path problem where this algorithm can

work even though there are negative edge weight values. This

algorithm itself is a refinement of Dijkstra's algorithm.

Bellman-Ford algorithm offers a dynamic solution for all

nodes in a graph to determine the minimum route with edge

weights that can be negative, but still does not contain

negative cycles [23]. Floyd-Warshall algorithm is a dynamic

algorithm and is often used to determine the shortest route

between all points on a directed graph without negative

cycles. This algorithm is presented to find solutions to the

shortest-path problem between certain fixed nodes and other

related nodes [16]. Johnson's algorithm is also one of the

commonly used algorithms to solve the shortest route

problem. This algorithm is a combination of the Bellman-

Ford and Dijkstra algorithms. Johnson's algorithm, among

other things, can be used on negative weighted graphs. [6] In

addition, Johnson's algorithm is also an appropriate solution

method for solving scheduling problems such as the research

by M. Okwu and I. Emovon [7] and by M. Redi and M. Ikram

[8]. Ant Colony Optimization (ACO) algorithm is an

optimization algorithm that uses probabilistic techniques and

is used to solve computational problems and find optimal

paths. The Ant Colony Optimization strategy will choose the

shortest path based on the path most frequently traveled by

ants, using mechanisms that mimic behavior or social

strategies that exist in nature [31]. In testing the five

algorithms, it is also assessed based on the type of shortest-

path, regarding which algorithm is suitable for use in finding

solutions based on a particular type of shortest-path. There

are several types such as single-pair, then single-source,

single-destination, and all-pairs shortest path problem.

 The parameter used as an indicator of the assessment of

an algorithm being tested. The first is related to the

calculation of the shortest distance, then also related to

complexity, execution time, and the final result of the

distance that being traveled. Calculation of the shortest

distance is to find the path between the initial node and the

final node so that the number of edges with minimum weight

is found. For example, that a node can be connected directly

to another node through one edge or a series of edges. So this

research has observed visually, that there may be shorter

'distances' between some vertices and others in the graph

[17]. Complexity is a parameter that provides information

regarding how complicated aspects of the algorithm used are.

Complexity here actually has a broader definition, in the

sense that this parameter can cover several aspects such as the

complexity of memory usage, space, running time

[18][19][20], and so on. Execution time is used to find out

how efficient and effective an algorithm is in terms of time to

process data. In research by Abusalim, et al. [27]Studying

that the number of nodes that make up the graph has an

influence on the fast or slow running time when executing

certain algorithms. Then, for the final result is to talk about

how the output is generated in the program.

 The research was carried out through several stages, such

as receiving input in the form of data used, then proceeding

with the determination of the starting point and destination

point used during the process. Implementation was carried

out on five algorithms and through these implementations,

followed by an analysis based on the parameters that have

been compiled to obtain results. The following Fig. 2 is to

describe the flow of the research through a flowchart.

Fig. 2. Distance Data between Tourist Objects

 Based on the flowchart, the first step is to collect the data.

In this case, the dataset that will be used in the research. The

stage continues with a literature review regarding each

algorithm that will be used as material in testing. And also

from this dataset, the starting point and destination point are

determined as a starting point for starting the test. After

determining the point of reference, the implementation is

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

418

carried out with five algorithms with the help of the Python

program. From the tests carried out, then the results and

comparisons are analyzed referring to the parameters that

have been compiled, related to the calculation of the shortest

distance, complexity, execution time, and the final result of

the distance traveled. Then the stage is continued by

determining the results and conclusions obtained through the

tests that have been carried out.

III. RESULT AND ANALYSIS

The results and analysis of the shortest-path search
calculation use 19 data from the Sumba Region nodes with
five algorithms, including the Dijkstra, Bellman-Ford, Floyd-
Warshall, Johnson, and Ant Colony algorithms. From these
algorithms, modeling is implemented using Python
programming language with Spyder application (Python 3.7).
For the explanation as follows.

A. Dijkstra’s Algorithm

1) Calculation of the shortest distance

 The steps for calculating Dijkstra's algorithm use an

approach in determining the shortest path starting from a

TMC Airport node to several other destination nodes in a

graph, including the following :

(a) The first step is to mark all the nodes to be visited,

(b) Mark the selected initial node with current distance 0, and

other nodes with infinity “∞”,

(c) Then update the initial node as the current node,

(d) For the current node, analyze all unvisited neighbor nodes

and measure their distance by adding the current distance

from the current node to the edge weight connecting the

neighbor node and the current node,

(e) Compare the distance measured recently with the

currently assigned distance to the neighboring nodes and take

that as the new current distance from the neighboring node,

(f) After that, consider all unvisited neighbors of the current

node, mark the current node as visited,

(g) If the marked destination node is visited then stops, then

the algorithm has ended. If not, select the unvisited node

marked with the closest distance, fix it as the current new

node, and repeat the process again from step (d).

2) Complexity

 The complexity when running Dijkstra's algorithm

program in Python is 70 lines.

3) Execution Time

 Dijkstra's Algorithm is carried out 5 times to run the

Python language program, so that it can better determine the

amount of time the program is running, and can take the

average time. The following Table II is for the test results

related to the execution time of the program.

TABLE II. DIJKSTRA’S ALGORITHM EXECUTION TIME
Execution Time

First Execution 0.0013222999999982221 seconds

Second Execution 0.0003200000000020964 seconds

Third Execution 0.00033470000000335176 seconds

Fourth Execution 0.0004951999999960321 seconds

Fifth Execution 0.0007295999999996639 seconds

Average Time 0.000640359999999873252 seconds

 For the first execution, the program takes

0.0013222999999982221 seconds to run the algorithm to the

stage of displaying the results obtained, which in this case is

route information. This is also the same for the second

execution up to the fifth execution stage. From the Table II,

it can be seen that the time used to run the algorithm can be

said to be very fast and does not have a significant difference

in each process. The average execution time obtained was

0.000640359999999873252 seconds, meaning that programs

that implement the Dijkstra’s Algorithm can be executed by

the console lightly and quickly.

4) Final Result

 The results of the shortest distance that being traveled are

calculated from TMC Airport to all destinations in the Sumba

Region, with the results of the Table III data as follows.

TABLE III. THE RESULT OF DIJKSTRA’S ALGORITHM
No. Distance Path Traversed Value

(km)

1 TMC

Airport

TMC Airport – TMC Airport 0

2 Kita Beach TMC Airport – Pantai Kita 19

3 Kabisu

Lobo Oro

Site

TMC Airport – Kabisu Lobo Oro

Site

9

4 Lendongara

Hill

TMC Airport – Lendongara Hill 10

5 Waikelo

Beach

TMC Airport – Waikelo Beach 8.3

6 Kawona

Beach

TMC Airport – Kawona Beach 8.7

7 Karakat

Indah

Beach

TMC Airport – Karakat Indah

Beach

22

8 Waikuri

Lagoon

TMC Airport – Waikuri Lagoon 42

9 Mandorak

Beach

TMC Airport – Mandorak Beach 40

10 Tanjung

Karoso

Beach

TMC Airport – Tanjung Karoso

Resort – Tanjung Karoso Beach

48.7

(from;

51)

11 Tanjung

Karoso

Resort

TMC Airport – Tanjung Karoso

Resort

43

12 Rotenggaro

Beach

TMC Airport – Rotenggaro Beach 47

13 Bawana

Beach

TMC Airport – Bawana Beach 58

14 Watu

Malandong

Beach

TMC Airport - Watu Malandong

Beach

63

15 Sumba

Culture

House

TMC Airport – Sumba Culture

House

6.5

16 Praijing

Village

TMC Airport – Praijing Village 43

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

419

17 Lailiang

Beach

TMC Airport – Praijing Village –

Lailiang Beach

62

(from;

66)

18 Rua Beach TMC Airport – Rua Beach 59

19 Mata

Yangu

Waterfall

TMC Airport – Mata Yangu

Waterfall

65

 Through the implementation of the program, it was found

that Dijkstra's algorithm was able to generate a path from the

starting point of TMC Airport to a particular location with a

more optimal distance value, such as on the TMC Airport

route to Tanjung Karoso Beach, the algorithm can provide

route information that can be passed along the route. The total

distance value is 48.7 km from the initial data of 51 km. Then,

the following example on the TMC Airport path to Lailiang

Beach obtained a route with a total distance value of 62 km,

is smaller than the initial data of 66 km. Dijkstra's algorithm

also computes other destinations until results are shown in

Table III.

B. Bellman-Ford Algorithm

1) Calculation of the shortest distance

 Calculations with the Bellman-Ford algorithm can be

used to find the shortest distance between source nodes to

each node. The Bellman-Ford algorithm can be used to find

the shortest route solution of the all-pairs type, but in terms

of implementation, the program is executed in the form of a

single-source shortest path problem, namely from a certain

node to all other nodes [24]. Calculation results are displayed

with good and accurate results.

2) Complexity

 For the complexity of the Bellman-Ford algorithm, it is

considered quite complex with 409 lines of source code.

3) Execution Time

 Based on 5 experiments on the Python program, the

following data obtained for testing results on program

execution as follows.

TABLE IV. BELLMAN-FORD ALGORITHM EXECUTION TIME
Execution Time

First Execution 0.0000004 seconds

Second Execution 0.0000009 second

Third Execution 0.0000005 seconds

Fourth Execution 0.0000006 seconds

Fifth Execution 0.0000004 seconds

Average Time 0.00000056 seconds

 Results on testing show that programs with Bellman-Ford

algorithms can run at very fast execution times, and can

display fast execution results. Through these tests, the

average execution time was 0.000056 seconds only.

4) Final Result

 For the final results to be represented through rows and

columns, the following is a Table V for variable initialization

for each tourist attraction based on the dataset used.

TABLE V. VARIABLE INITIALIZATION
Variable

Initialization

Sumba

Regional

Destination

Variable

Initialization

Sumba

Regional

Destination

1 TMC Airport 11 Tanjung Karoso

Resort

2 Kita Beach 12 Rotenggaro

Beach

3 Kabisu Lobo

Oro Site

13 Bawana Beach

4 Lendongara Hill 14 Watu

Malandong

Beach

5 Waikelo Beach 15 Sumba Culture

House

6 Kawona Beach 16 Praijing Village

7 Karakat Indah

Beach

17 Lailiang Beach

8 Waikuri Lagoon 18 Rua Beach

9 Mandorak

Beach

19 Mata Yangu

Waterfall

10 Tanjung Karoso

Beach

 Based on the table above, the final results in the Fig. 3

below are adjusted for the variable initialization in rows and

columns with their respective distance values.

Fig. 3. The result of Bellman-Ford algorithm

 The rows and columns in the table are sorted based on the

initialization of the data that has been compiled. The

Bellman-Ford algorithm works by carrying out calculations

on each row and column and obtaining changes at several

points with a smaller total distance traveled, changes are

highlighted by the colored part. It was found that from all the

existing data, the Bellman-Ford algorithm was able to

analyze the data well and provide the shortest route solution

correctly at each point.

 So, by implementing the Bellman-Ford algorithm with a

complexity of 409 lines of source code and several tests, it

was found that the Bellman-Ford algorithm was considered

effective in being able to find the minimum distance value of

each node in the dataset. However, the efficiency of the

program line is considered sufficient, because when

compared to the other algorithms, the application of the

source code to the Bellman-Ford algorithm is executed in

large numbers.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

420

C. Floyd-Warshall Algorithm

1) Calculation of the shortest distance

 Calculations on the Floyd-Warshall algorithm are indeed

more suitable for use for the all-pairs type [16], calculations

are carried out using a Python program with 19 nodes which

are then written in matrix form. From the implementation,

can obtain that the calculations can run well and can find the

most optimal solution, in this case the shortest route between

all pairs of vertices.

2) Complexity

 For the complexity of the program lines used, there are as

many as 59 lines of source code.

3) Execution Time

 Based on 5 experiments on the Python program, the

following data obtained for testing results on Table VI

program execution as follows.

TABLE VI. FLOYD-WARSHALL ALGORITHM EXECUTION TIME
Execution Time

First Execution 0.0000009 seconds

Second Execution 0.0000005 seconds

Third Execution 0.0000004 seconds

Fourth Execution 0.0000006 seconds

Fifth Execution 0.0000005 seconds

Average Time 0.00000058 seconds

 Table VI depicts the results of each program execution

process that applies the Floyd-Warshall algorithm. It can be

seen that the execution time used to run the program is also

very fast with the average execution time from 5 tests being

0.00000058 seconds.

4) Final Result

 The final result of applying the algorithm based on each

row and column is initialized as follows.

TABLE VII. VARIABLE INITIALIZATION
Variable

Initialization

Sumba

Regional

Destination

Variable

Initialization

Sumba

Regional

Destination

1 TMC Airport 11 Tanjung Karoso

Resort

2 Kita Beach 12 Rotenggaro

Beach

3 Kabisu Lobo

Oro Site

13 Bawana Beach

4 Lendongara Hill 14 Watu

Malandong

Beach

5 Waikelo Beach 15 Sumba Culture

House

6 Kawona Beach 16 Praijing Village

7 Karakat Indah

Beach

17 Lailiang Beach

8 Waikuri Lagoon 18 Rua Beach

9 Mandorak

Beach

19 Mata Yangu

Waterfall

10 Tanjung Karoso

Beach

 The table above represents the variable initialization for

each tourist attraction, then the results will be made in the

form of rows and columns represented by the initialization as

in Table VII. The following is a Fig. 4 for the results after

applying the Floyd-Warshall algorithm to the dataset used.

Fig. 4. The result of Floyd-Warshall algorithm

 Rows and columns are also written based on the

initialization of data that represents each location.

Calculations are carried out at each point and obtained using

the Floyd-Warshall algorithm calculation method which is

also able to display route results with more optimal distance

values at several points compared to the initial data, depicted

in colored sections. It was found that this algorithm can

provide quite significant changes to the problem of finding

the shortest route.

 So, by applying the Floyd-Warshall algorithm with a

source code line complexity of 59 lines and several tests, it

can be obtained that the Floyd-Warshall algorithm is

considered effective and efficient in finding the minimum

distance value for each node in the dataset. This algorithm is

also very effective for use in the problem of determining the

shortest route of the all-pairs type.

D. Johnson’s Algorithm

1) Calculation of the shortest distance

 The stages of the Johnson algorithm calculation

steps use an approach in determining the shortest path of all

pairs of paths where the destination vertices in a graph are

among others [32], as follows.

(a) In the first step, add a vertex S to all path points on graph

G by giving it a set of 0.

(b) Run the Bellman-Ford algorithm on G' with node S as the

source by finding the minimum weight, then calculating the

heuristic or h[v-1] for every number of nodes in graph G.

(c) When calculating h[…], then recalculate the edges of the

graph using the formula: w(u, v) = w(u, v) + h[u] – h[v].

(d) If the iteration is complete, then delete the added S node

and all weights are now positive on the graph. If the

calculation iteration has not been completed, repeat step (c).

(e) Run Dijkstra's shortest path algorithm for each node as the

source and calculate the shortest route (u,v).

(f) If the iteration is complete, the shortest route u and v will

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

421

be found. If the calculation iteration has not been completed,

repeat step (e).

2) Complexity

 The complexity of source code when running Johnson's

Algorithm program in Python is 86 lines.

3) Execution Time

 The time to run the Johnson’s algorithm in Python

program implemented 5 times, so that it can better determine

the amount of time the program is running and can take the

average time. The following Table VIII is the result of the

execution of the program.

TABLE VIII. JOHNSON’S ALGORITHM EXECUTION TIME
Execution Time

First Execution 0.013958700000000768 seconds

Second Execution 0.01639690000000016 seconds

Third Execution 0.013379900000000333 seconds

Fourth Execution 0.019444300000003523 seconds

Fifth Execution 0.01641610000000071 seconds

Average Time 0.0159191800000010988 seconds

 Table VIII explains the test results of running the program

with the Johnson’s algorithm and is obtained from the first

execution trial to the last trial stage. The time required to run

the program has a very slight time difference, the time used

is only around 0.01 seconds at each stage. With this time, it

can be seen that the execution time for this algorithm is also

very fast and from the five experiments, the average time

required to run the program and display the results is

0.0159191800000010988 seconds on the console.

4) Final Result

 The results are managed by Johnson's algorithm which

then finds the results of the shortest distance weights with

those that have been modified from vertex-1 to vertex-19 to

several other vertices. The results of the distance when

running the Johnson’s algorithm program with the Python

programming language, found 72 shorter path data from each

node that was originally searched for all destination nodes.

 So, in the data Johnson's algorithm looks for the distance

from vertex-1 and vertex-19 to all destination data, by

obtaining 86 lines of program complexity and

0.0159191800000010988 program time in seconds. The

results obtained found 72 shorter path data from each initial

node that was searched for all destination nodes.

E. Ant Colony Algorithm

1) Calculation of the shortest distance

 The steps for calculating the Ant Colony algorithm

use an approach in determining the shortest path starting from

a TMC Airport node to every one pair of destination nodes

on a graph, including the following:

(a) The first step, set the value of Ant Colony optimization on

the initial node. With conditions, nodes that have been visited

are included in the tabu list, so they will not be visited again.

(b) After performing probabilistic node calculations, then

select the next node to be assigned the Ant Colony value.

(c) Move to the next node and the visited node becomes tabu

list.

(d) View all visited nodes, if not repeat step (b).

(e) Then it will record the length of the side or the distance of

the route taken, and delete the entire tabu list.

(f) Determine the shortest route from the current nodes and

update the pheromone, if the Ant Colony travels one full

route back to the beginning.

(g) If the limit for the number of Ant Colony is the maximum

iteration that has been reached and will be completed, thus

determining the shortest route. If the maximum iteration has

not been completed, repeat step (a).

2) Complexity

 The complexity of source code when running the Python

language of Ant Colony algorithm program is 84 lines.

3) Execution Time

 When running the Python language program, the Ant

Colony algorithm implemented 5 times, so that it can better

determine the amount of time the program is running and can

take the average time. In testing the execution of the Python

language program, it can be seen in the Table IX below the

results of testing the program.

TABLE IX. ANT COLONY ALGORITHM EXECUTION TIME
Execution Time

First Execution 1.2428267000000233 seconds

Second Execution 0.8022379999999885 seconds

Third Execution 0.8272481999999854 seconds

Fourth Execution 1.2401753999999983 seconds

Fifth Execution 0.8539233000000195 seconds

Average Time 0.993282320000003 seconds

 In contrast to several algorithms that have been tested

previously, the execution time for running the Ant Colony

program actually varies. From Table IX it can be seen that in

the first and fourth experiments, the time used to run the

program was more than 1 second. However, it is different for

other experiments, which only take less than 1 second. Even

so, each stage still has a slight time difference and is still

considered very fast to be able to execute an Ant Colony

program according to the program specifications used. Also

obtained was the average program execution time of

0.993282320000003 seconds.

4) Final Result

 In this algorithm, tests were carried out on 19 ants from

19 data on the destinations in the Sumba area used. Then on

the 19 data used variable initialization is applied, as in the

following Table X.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

422

TABLE X. VARIABLE INITIALIZATION
Variable

Initialization

Sumba

Regional

Destination

Variable

Initialization

Sumba

Regional

Destination

1 TMC Airport 11 Tanjung Karoso

Resort

2 Kita Beach 12 Rotenggaro

Beach

3 Kabisu Lobo

Oro Site

13 Bawana Beach

4 Lendongara Hill 14 Watu

Malandong

Beach

5 Waikelo Beach 15 Sumba Culture

House

6 Kawona Beach 16 Praijing Village

7 Karakat Indah

Beach

17 Lailiang Beach

8 Waikuri Lagoon 18 Rua Beach

9 Mandorak

Beach

19 Mata Yangu

Waterfall

10 Tanjung Karoso

Beach

 Then, testing was carried out and the shortest distance
was found from the iteration of the ant in the form of a circuit.
The following Table XI represents the test results data with
the Ant Colony algorithm.

TABLE XI. ANT COLONY ALGORITHM RESULTS
Ant

Iteration

Path Traversed Value

(km)

1st 1 - 15 - 3 - 4 - 2 - 16 - 17 - 18 - 19 - 13 - 14

- 12 - 10 - 8 - 9 - 11 - 7 - 6 - 5 - 1

385.3

2nd 1 - 15 - 3 - 2 - 4 - 5 - 6 - 7 - 8 - 9 - 11 -

10 - 12 - 13 - 14 - 18 - 17 - 16 - 19 - 1

342.0

3rd 1 - 15 - 5 - 6 - 7 - 9 - 8 - 11 - 10 - 12 - 14

- 13 - 17 - 16 - 19 - 18 - 2 - 4 - 3 - 1

376.0

4th 1 - 15 - 5 - 6 - 7 - 9 - 8 - 11 - 10 - 12 - 13

- 14 - 19 - 16 - 18 - 17 - 3 - 4 - 2 - 1

382.0

5th 1 - 15 - 6 - 5 - 3 - 4 - 2 - 18 - 17 - 16 - 19

- 13 - 14 - 10 - 11 - 12 - 8 - 9 - 7 - 1

402.0

6th 1 - 6 - 5 - 3 - 4 - 2 - 16 - 17 - 18 - 19 - 7 -

15 - 9 - 8 - 11 - 10 - 12 - 13 - 14 - 1

428.0

7th 1 - 6 - 5 - 15 - 3 - 4 - 2 - 16 - 19 - 18 - 17

- 13 - 14 - 12 - 10 - 11 - 9 - 8 - 7 - 1

374.0

8th 1 - 5 - 6 - 7 - 19 - 16 - 17 - 18 - 14 - 13 - 12

- 9 - 8 - 10 - 11 - 15 - 4 - 2 - 3 - 1

380.0

9th 1 - 15 - 6 - 5 - 3 - 4 - 2 - 11 - 10 - 9 - 8 -

7 - 12 - 13 - 14 - 18 - 17 - 16 - 19 - 1

395.0

10th 1 - 3 - 4 - 2 - 5 - 6 - 7 - 8 - 9 - 11 - 10 -

12 - 13 - 14 - 18 - 17 - 16 - 19 - 15 - 1

337.5

11th 1 - 15 - 3 - 4 - 2 - 6 - 5 - 9 - 10 - 11 - 12 -

13 - 14 - 17 - 18 - 16 - 19 - 7 - 8 - 1

452.0

12th 1 - 5 - 6 - 15 - 3 - 4 - 2 - 16 - 19 - 7 - 8 -

9 - 11 - 10 - 12 - 14 - 13 - 17 - 18 - 1

447.0

13th 1 - 15 - 3 - 4 - 2 - 5 - 6 - 7 - 9 - 8 - 10 -

11 - 12 - 13 - 14 - 16 - 17 - 18 - 19 - 1

380.0

14th 1 - 15 - 3 - 5 - 6 - 7 - 9 - 8 - 11 - 10 - 12 -

14 - 13 - 18 - 17 - 16 - 19 - 2 - 4 - 1

343.0

15th 1 - 15 - 6 - 5 - 7 - 8 - 9 - 11 - 10 - 12 - 14

- 13 - 19 - 16 - 17 - 18 - 3 - 4 - 2 - 1

389.0

16th 1 - 5 - 6 - 7 - 8 - 9 - 11 - 10 - 12 - 14 - 13

- 19 - 18 - 17 - 16 - 2 - 15 - 3 - 4 - 1

385.0

17th 1 - 15 - 7 - 6 - 5 - 3 - 4 - 2 - 18 - 17 - 16 -

19 - 13 - 14 - 12 - 10 - 11 - 9 - 8 - 1

400.0

18th 1 - 15 - 5 - 6 - 7 - 9 - 8 - 11 - 10 - 12 - 13 353.0

- 14 - 18 - 17 - 19 - 16 - 3 - 4 - 2 - 1

19th 1 - 5 - 6 - 15 - 7 - 8 - 9 - 11 - 10 - 12 - 13

- 14 - 18 - 16 - 17 - 19 - 3 - 4 - 2 - 1

377.0

 The display of running iterations is accompanied by path
traversed, and how many total distance values are taken on
the corresponding route. In this Ant Colony data algorithm,
find the distance from TMC Airport by visiting all 18
destinations and then returning to TMC Airport, obtaining 84
lines of program complexity and 0.993282320000003
program time in seconds. The most optimal route results
obtained are as far as 337.5 km, with the following routes:
TMC Airport - Kabisu Lobo Oro Site - Lendongara Hill - Kita
Beach - Waikelo Beach - Kawona Beach - Karakat Indah
Beach - Waikuri Lagoon - Mandorak Beach - Tanjung
Karoso Resort - Tanjung Beach Karoso - Rotenggaro Beach
- Bawana Beach - Watu Malandong Beach - Rua Beach -
Lailiang Beach - Praijing Village - Mata Yangu Waterfall -
Sumba Cultural House - TMC Airport.

F. Discussion
 Through the results described, the analysis performed on
the performance of each algorithm on the test. Through
testing algorithms judged based on the parameters that were
indicators of this study, each algorithm had its own
advantages and disadvantages. As such, the Dijkstra’s
algorithm can provide the most optimal shortest route results,
but it can only effectively work to solve single-source and
single-destination-type problems. The Bellman-Ford
algorithm also has its own advantages, such as being able to
hold negative weight values on graphs, but in this study it has
the most complexity on source code among other algorithms.
The Bellman-Ford algorithm can be used for almost the same
path as Dijkstra in single-source and single-destination types.
The Floyd-Warshall algorithm is more effective for use in all-
pairs path types, and can provide the most optimal value at
any point. Johnson's algorithm is a combination of Dijkstra's
algorithm and Bellman-Ford's algorithm. Meanwhile, for the
Ant Colony algorithm, it works with the longest execution
time among other algorithms, but after analysis it turns out
that the Ant Colony algorithm has a high degree of
effectiveness in resolving the problem of route lookup for all
nodes.
 Speaking of which algorithms are best suited to
implement, it is also necessary to see how the graph picture
will be examined and which solutions will be sought for the
problem. Thus, the search can be performed more effectively
and efficiently and have the most optimal distance value, in
the sense that it does not focus only on which route with the
least weight value. As described, Dijkstra’s and Bellman-
Ford algorithms are suitable for use in single-source and
single-destination graphs, Floyd-Warshall algorithms for all-
pairs type, Johnson's algorithm can also be used for all-pairs
type searches and Ant Colony can be used to find routes that
can visit all destinations at once at a time well and the
minimum possible distance value.

IV. CONCLUSION
Based on testing of the five algorithms and adjusted to the

parameters that have been compiled, it is found that each

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

423

algorithm has its own type. Dijkstra's algorithm can be used
to calculate the shortest route for single-source and single-
destination types. It's the same as the Bellman-Ford
algorithm, except that the Bellman-Ford algorithm can be
used at the same time on graphs that have negative weight
values. Meanwhile, the Floyd-Warshall algorithm is suitable
for use on the all-pairs type. For Johnson's algorithm it can
be used to determine the shortest path from all pairs of paths
where the destination node is on a graph, and Ant Colony for
calculating from a node to every one pair of destination
nodes. Through the implementation of the Python program,
it was found that there was a change in the dataset used,
namely the Southwest Sumba data, to become data with a
more optimum distance value, in this case the minimum
distance value from a starting point to a destination point.

Through the Python program that has been researched, the
complexity of each of the various algorithms is obtained.
Dijkstra's algorithm has 70 lines of source code, Bellman-
Ford has 409 source codes, Floyd-Warshall has 59 source
codes, Johnson has 86 source codes, and Ant Colony has 84
source codes. Thus, the algorithm with the lowest complexity
is owned by Floyd-Warshall algorithm.

Then, Dijkstra's algorithm with execution time running in
the Python program obtained an average time of
0.00064035999999873252 seconds, Bellman-Ford's
algorithm for 0.00000056 seconds, Floyd-Warshall's
algorithm for 0.00000058 seconds, Johnson's algorithm for
0.0159191800000010988 seconds, and Ant Colony's
algorithm for 0.993282320000003 seconds. Thus, the
Bellman-Ford and Floyd-Warshall algorithms are considered
to have the fastest execution time.

Based on all the parameters that have been examined, it
can be concluded that the Ant Colony algorithm has high
effectiveness for solving the most efficient route finding for
all nodes. And the Floyd-Warshall algorithm is considered to
be the most effective algorithm in finding all-pairs type
routes, and is able to find the most optimal distance value
between one node and another node. Also, Bellman-Ford has
the fastest execution time when a Python program is run.

Through such implementations it is also obtained about
how the algorithm performs if it is based through certain
parameters. Each algorithm has its own advantages and
disadvantages when implemented. The journal focuses on
how to test the subject, then provides a new perspective on
which algorithms have the most efficient performance with
good accuracy when implemented on specific graph models
and path models.

ACKNOWLEDGMENT
Collate Thanks to LPPM Darma Catholic University of

Cendika for its contribution to support this research in the
form of internal grant funding.

References

[1] B. S. N Assistant professor GFGC, “A Study on Graph Coloring,”

Int J Sci Eng Res, vol. 8, no. 5, 2017, [Online]. Available:

http://www.ijser.org
[2] Tirastittam Pimploi and Waiyawuththanapoom Phutthiwat,

“Public Transport Planning System by Dijkstra Algorithm Case

Study Bangkok Metropolitan Area,” International Journal of

Computer and Information Engineering, vol. 08, 2014.

[3] M. Iqbal, K. Zhang, S. Iqbal, and I. Tariq, “A Fast and Reliable

Dijkstra Algorithm for Online Shortest Path,” International

Journal of Computer Science and Engineering, vol. 5, no. 12, pp.

24–27, Dec. 2018, doi: 10.14445/23488387/IJCSE-V5I12P106.

[4] Z. Jiang, V. Sahasrabudhe, A. Mohamed, H. Grebel, and R. Rojas-

Cessa, “Greedy algorithm for minimizing the cost of routing

power on a digital microgrid,” Energies (Basel), vol. 12, no. 16,

Aug. 2019, doi: 10.3390/en12163076.

[5] A. Kejriwal and A. Temrikar, “Graph Theory and Dijkstra’s

Algorithm:A solution for Mumbai’s BEST buses,” The

International Journal of Engineering and Science (IJES) ||, pp.

23–42, 2019, doi: 10.9790/1813-0810014047www.theijes.com.

[6] Umamaheswari K., Pavithra A., Srinivashini S., and Subipriya S.,

“Tackling a Shortest Path Having a Negative Cycle by using

Johnson_s Calculation,” TEST Engineering & Management, vol.

81, 2019.

[7] M. Okwu and I. Emovon, “Application of Johnson’s algorithm in

processing jobs through two-machine system,” Journal of

Mechanical and Energy Engineering, vol. 4, no. 1, pp. 33–38,

Aug. 2020, doi: 10.30464/jmee.2020.4.1.33.

[8] M. Redi and M. Ikram, “Dimension Reduction and Relaxation of

Johnson’s Method for Two Machines Flow Shop Scheduling

Problem,” Sultan Qaboos University Journal for Science

[SQUJS], vol. 25, no. 1, p. 26, Jun. 2020, doi:

10.24200/squjs.vol25iss1pp26-47.

[9] C. Dalfó and M. À. Fiol, “Graphs, friends and acquaintances,”

Electronic Journal of Graph Theory and Applications, vol. 6, no.

2, pp. 282–305, 2018, doi: 10.5614/ejgta.2018.6.2.8.

[10] X. Z. Wang, “The Comparison of Three Algorithms in Shortest

Path Issue,” in Journal of Physics: Conference Series, Institute of

Physics Publishing, Oct. 2018. doi: 10.1088/1742-

6596/1087/2/022011.

[11] A. A. B. A. Homaid, A. R. A. Alsewari, K. Z. Zamli, and Y. A.

Alsariera, “Adapting the elitism on greedy algorithm for variable

strength combinatorial test cases generation,” IET Software, vol.

13, no. 4, pp. 286–294, Aug. 2019, doi: 10.1049/iet-

sen.2018.5005.

[12] A. M. Benjamin, S. A. Rahman, E. M. Nazri, and E. A. Bakar,

“Developing A Comprehensive Tour Package Using An Improved

Greedy Algorithm With Tourist Preferences,” 2019. [Online].

Available: https://www.researchgate.net/publication/335541687

[13] M. Elizabeth, B. Gani, M. A. Safitri, C. Lusiana, and M. Dewi,

“Real Time Public Transportation Navigator System in Jakarta by

Using Greedy Best First Search Algorithm,” 2018, [Online].

Available: http://www.emarketer.com/Article/Asia-Pacific-

[14] S. Orhani, “Finding the Shortest Route for Kosovo Cities Through

Dijkstra’s Algorithm,” Middle European Scientific Bulletin, vol.

25, 2022, [Online]. Available:

https://www.researchgate.net/publication/361443814

[15] R. Chen, “Dijkstra’s Shortest Path Algorithm and Its Application

on Bus Routing,” 2022.

[16] V. Sakharov, S. Chernyi, S. Saburov, and A. Chertkov,

“Automatization Search for the Shortest Routes in the Transport

Network Using the Floyd-warshell Algorithm,” in Transportation

Research Procedia, Elsevier B.V., 2021, pp. 1–11. doi:

10.1016/j.trpro.2021.02.041.

[17] N. Syuhada, M. Pazil, N. Mahmud, S. H. Jamaluddin, N.

Farasyaqirra, and B. Mustafa, “Shortest Path from Bandar Tun

Razak to Berjaya Times Square using Dijkstra Algorithm,” 2020.

[Online]. Available: https://jcrinn.com

[18] G. Deepa, P. Kumar, A. Manimaran, K. Rajakumar, and V.

Krishnamoorthy, “Dijkstra Algorithm Application: Shortest

Distance between Buildings,” International Journal of

Engineering & Technology, vol. 7, no. 4.10, p. 974, Oct. 2018, doi:

10.14419/ijet.v7i4.10.26638.

[19] Sari I. P., Fahroza M. F., Mufit M. I., and Qathrunad I. F.,

“Implementation of Dijkstra’s Algorithm to Determine the

Shortest Route in a City,” Journal of Computer Science,

Information Technologi and Telecommunication Engineering, vol.

02, pp. 134–138, Mar. 2021, doi: 10.30596/jcositte.v2i1.6503.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 12, Nomor 03, PP 415-424

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v12i3.1756, Copyright ©2023

Submitted : May 24,2023, Revised : August 8, 2023, Accepted : Oktober 1, 2023, Published : November 6, 2023

424

[20] O. Khaing, H. Htight Wai, and E. Ei Myat, “Using Dijkstra’s

Algorithm for Public Transportation System in Yangon Based on

GIS,” 2018. [Online]. Available: www.ijsea.com442

[21] T. Sari, A. S. Zain, and A. N. Handayani, “Application Of

DIJKSTRA Algorithm For Network Troubleshooting In SMK

Telkom Malang,” 2019.

[22] O. K. Sulaiman, A. M. Siregar, K. Nasution, and T. Haramaini,

“Bellman Ford algorithm - In Routing Information Protocol

(RIP),” in Journal of Physics: Conference Series, Institute of

Physics Publishing, Apr. 2018. doi: 10.1088/1742-

6596/1007/1/012009.

[23] P. Gupta and V. Pathak, “A Minimum Spanning Tree-based

Routing Technique of FAT Tree for Efficient Data Center

Networking,” Mathematical Statistician and Engineering

Applications, vol. 71, no. 1, Jan. 2022, doi:

10.17762/msea.v71i1.44.

[24] F. Mukhlif and A. Saif, “Comparative Study On Bellman-Ford

And Dijkstra Algorithms,” 2020. [Online]. Available:

https://www.researchgate.net/publication/340790429

[25] Botsis D. and Panagiotopoulos E., “Determination of the shortest

path in the university campus of Serres using the Dijkstra and

Bellman‐Ford algorithms,” 2020.

[26] A. Manan, S. Imran, and A. Lakyari, “Single source shortest path

algorithm Dijkstra and Bellman-Ford Algorithms: A Comparative

study,” INTERNATIONAL JOURNAL OF COMPUTER SCIENCE

AND EMERGING TECHNOLOGIES (IJCET), vol. 3, no. 2, pp.

25–28, 2019, [Online]. Available: https://ijcet.salu.edu.pk

 [27] S. W. G. Abusalim, R. Ibrahim, M. Zainuri Saringat, S. Jamel, and

J. Abdul Wahab, “Comparative Analysis between Dijkstra and

Bellman-Ford Algorithms in Shortest Path Optimization,” in IOP

Conference Series: Materials Science and Engineering, IOP

Publishing Ltd, Sep. 2020. doi: 10.1088/1757-

899X/917/1/012077.

[28] O. Yu Lavlinskaya, T. V. Kurchenkova, and O. V. Kuripta,

“Shortest path algorithm for graphs in instances of semantic

optimization,” in Journal of Physics: Conference Series, Institute

of Physics Publishing, May 2020. doi: 10.1088/1742-

6596/1479/1/012036.

[29] Rachmad A., Syarief M., Rochman E. M. S., and R. G. Husni, “Ant

colony optimization model for determining the shortest route in

Madura-Indonesia tourism places,” Journal of Mathematical and

Computational Science, 2021, doi: 10.28919/jmcs/7078.

[30] D. R. Anamisa, A. Rachmad, and E. M. S. Rochman, “Ant Colony

System Based Ant Adaptive for Search of the Fastest Route of

Tourism Object Jember, East Java,” in Journal of Physics:

Conference Series, Institute of Physics Publishing, 2020. doi:

10.1088/1742-6596/1477/5/052053.

[31] T. Herianto, “Implementation of the Ant Colony System

Algorithm in the Lecture Scheduling Process,” Instal : Jurnal

Komputer, vol. 12, 2020.

[32] I. G. Ivanov, G. V. Hristov, and V. D. Stoykova, “Algorithms for

optimizing packet propagation latency in software-defined

networks,” in IOP Conference Series: Materials Science and

Engineering, IOP Publishing Ltd, Feb. 2021. doi: 10.1088/1757-

899X/1031/1/012072.

