

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 330-336

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2234, Copyright ©2024

Submitted : July 26, 2024, Revised : August 26, 2024, Accepted : August 28, 2024, Published : November 20, 2024

330

Application of Deep Learning Algorithm for Web

Shell Detection in Web Application Security System

Rezky Yuranda[1]*, Edi Surya Negara[2]

Master of Information Engineering Study Program, Bina Darma University[1], [2]

Palembang, Indonesia

yurandarezky@gmail.com [1] e.s.negara@binadarma.ac.id [2]

Abstract— A web shell is a script executed on a web server,

often used by hackers to gain control over an infected server.

Detecting web shells is challenging due to their complex behavior

patterns. This research focuses on using a deep learning approach

to detect web shells on the ISB Atma Luhur web server, aiming to

develop a model capable of precise detection. By training the

model with labeled PHP files, malicious web shells are

distinguished from benign files. The study is crucial for enhancing

the server's security, preventing hacker attacks, and safeguarding

sensitive data. Through preprocessing techniques such as opcode

extraction and feature selection, useful pattern recognition for web

shell detection is achieved. Training deep learning models like

CNN and RNN with LSTM on processed data leads to accuracy

evaluation using classification metrics. The CNN model

demonstrates superior performance in detection, emphasizing the

effectiveness of deep learning for web shell detection. The research

contributes to enhancing security in web-based applications,

protecting against cyber threats like web shells..

Keywords— Webshell, Deep Learning, CNN, RNN, LSTM

I. INTRODUCTION

A system is a collection of two or more components or
subsystems that interact with each other to achieve a goal. In
the context of an organization, a system comprises various
components such as people, computers, information
technology, and workflows. This system processes data into
information to reach the established goals and objectives [1].

One notable application of this technology is web-based
applications. These applications provide substantial benefits in
terms of accessibility, as they can be accessed from any location
and at any time, given that an internet connection and a web
browser are available. Additionally, they eliminate the need for
local installation, further enhancing their convenience and ease
of use. [2].

Although web-based applications offer advantages in terms
of accessibility, they also face several cyber threats. One such
threat is the web shell, which poses a serious security risk to
web-based applications [3]. A web shell is a script that can be
executed by a web server, granting the user who has access to
the server the ability to execute commands. An example of this
is a PHP shell, which represents a type of web-based shell
implementation. When a PHP shell is successfully uploaded, it
allows an attacker to take control of the system or perform
malicious actions, leading to web shell attacks or remote code

execution [4].

Web shells are typically used by malicious actors to gain
full control over infected servers. Detecting web shells presents
a significant challenge due to the complex and dynamic patterns
of behavior exhibited by these scripts [5]. In this study, a deep
learning approach is employed to detect web shells on the ISB
Atma Luhur web application server.

ISB Atma Luhur is also undergoing a migration process
from desktop-based applications to web-based applications.
This transition introduces new security challenges, including
threats from web shells. Additionally, the increasing number of
incidents involving web applications targeted by hacks and the
dissemination of online gambling ads through web-based
platforms underscores the critical need for enhanced security
measures in web applications [6].

The primary objective of this research is to develop a deep
learning model capable of detecting web shells with high
precision. The choice of deep learning is based on previous
studies comparing traditional machine learning and deep
learning for text classification [7], [8]. This model will be
trained using a labeled dataset of PHP files, where the label
"malicious" indicates the presence of a web shell and the label
"benign" indicates its absence.

For this study, the models to be evaluated are Convolutional
Neural Networks (CNN) and Recurrent Neural Networks
(RNN) with Long Short-Term Memory (LSTM). Previous
research has shown that LSTM models have achieved
significant accuracy in similar contexts [9], [10] . Likewise,
CNNs have proven effective for text classification based on
prior studies [10]. By integrating these two approaches, it is
anticipated that a deeper understanding of their application in
this relevant context can be gained.

This study will focus on comparing the accuracy levels
between LSTM and CNN models. This approach is crucial for
identifying the relative strengths of each model within the
chosen application context [11]. By evaluating their
performance, it is expected to reveal both the advantages and
limitations of each model, as well as potential optimization
strategies to enhance their effectiveness in complex text
classification tasks.

 In previous research, Tianmin [5] conducted a study
on webshell detection using Machine Learning methods by
applying opcode+N-Gram+TF-IDF for sample characterization

mailto:yurandarezky@gmail.com
mailto:e.s.negara@binadarma.ac.id

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 330-336

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2234, Copyright ©2024

Submitted : July 26, 2024, Revised : August 26, 2024, Accepted : August 28, 2024, Published : November 20, 2024

331

and algorithms such as XGBoost, MLP, RF, and NB for model
training. The results showed that the optimal detection model
based on the XGBoost algorithm achieved an accuracy of over
97% under experimental conditions

 Ngoc-Hoa [12] also proposed a model for detecting
malicious code in PHP source files using a deep learning
approach. This method involves pattern matching techniques by
applying Yara rules to build malicious and benign datasets,
converting PHP source code into numerical opcode sequences,
and using a Convolutional Neural Network (CNN) model to
predict whether a PHP file contains malicious code such as a
webshell. Experimental results showed that the proposed
method achieved an accuracy of 99.02% with a false positive
rate of 0.85%.

 This research is crucial for strengthening the security
of the ISB Atma Luhur web application server. The results are
expected to be used to protect the server from cyber threats and
prevent damage to sensitive data..

II. RESEARCH METHODOLOGY

This research was conducted from April to July at ISB
Atmaluhur, located at JL. Jendral Sudirman, Pangkalpinang
City, Bangka Belitung Islands Province. The research location
was chosen due to its relevance to the research objectives and
the availability of the necessary data.

A. Research Variables
The research variables for the study on web shell detection

using a deep learning approach can be divided into two main
categories: independent variables and dependent variables. The
independent variables are the input factors in this research and
are not influenced by other variables, such as opcode and
opcode extraction features. The dependent variable is the label
indicating whether the PHP code extracted from the opcode is
malicious or benign [13].

B. Data Collection Methods
In this research, data on web shells and normal PHP were

downloaded from various available online sources. The web
shells were collected from 17 project repositories, resulting in a
total of 6021 web shells, which were then processed to 2918.
The normal PHP files were sourced from CMS and several
other open-source projects like WordPress, Yii2, Smarty, and
CodeIgniter, in line with what is used at ISB Atma Luhur. The
outcome was 2791 normal PHP files.

C. Data Analysis Techniques
In this research, data analysis techniques were implemented

to detect the presence of web shells using a deep learning
approach. An overview of the applied data analysis techniques
can be seen in Figure 1.

Fig 1. Research Flowchart

1. Data Analysis Techniques
At this stage, the collected PHP web shell files undergo a

cleaning process. The objective is to extract PHP web shell files
into opcodes in order to obtain a series of features that can
detect potentially dangerous PHP web shells in the form of
tokens. The preprocessing phase is illustrated in the figure.

Fig 2. Preprocessing Data

PHP files will be extracted through the process of opcode

extraction. Opcodes are the basic machine instructions

generated from PHP code after it has been compiled or

interpreted [5], [14].

After the extraction process, tokenization is performed.

During this process, numbers, punctuation, and other characters

deemed irrelevant for opcode processing are removed.

Tokenization is crucial in data preprocessing.

2. Feature Selection

Feature selection is a crucial step aimed at enhancing and

optimizing the efficiency of algorithms by simplifying index

evaluation. Given the many opcode features with limited

vocabulary, which result in sparse word vectors, it is essential

to trim unnecessary features to maintain computational

efficiency without compromising performance. To achieve this,

Word2Vec, a method for word representation in a

multidimensional vector space proposed by Mikolov [15], will

be utilized. Specifically, the Continuous Bag of Words

(CBOW) architecture will be employed to build the vector

model.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 330-336

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2234, Copyright ©2024

Submitted : July 26, 2024, Revised : August 26, 2024, Accepted : August 28, 2024, Published : November 20, 2024

332

3. Model Development

This process employs deep learning models to determine

which model achieves the highest accuracy. The models

considered are Convolutional Neural Networks (CNN) [10] and

Recurrent Neural Networks (RNN) with Long Short-Term

Memory (LSTM) [9], [10] for web shell detection. These

models will be trained using the processed data, which will be

divided into 80% training data and 20% testing data, to

recognize patterns associated with web shells.

Fig. 1: CNN Architecture

Fig. 2: RNN with LSTM Architecture

Fig 3 illustrates the architecture of a CNN consisting of

several layers, starting with the input layer, followed by the

Encoding layer, Conv1D, GlobalMaxPooling1D, two Dense

layers, and finally the output layer. Fig 4 depicts the architecture

of an RNN with LSTM, which includes the input layer,

followed by the embedding layer, then the LSTM (Long Short-

Term Memory) block, and three Dense layers with activation

functions applied after the LSTM and on each Dense layer. The

final part is a Dense layer with activation function 3,

representing the output layer of this network

4. Validation and Evaluation

After completing the training and testing phases, the next

step is to perform validation and evaluation using commonly

applied metrics in classification, namely accuracy, precision,

recall, and F1-score. These metrics will assist in assessing the

model's success in predicting labels with high accuracy and in

understanding how well the model avoids potential prediction

errors [16].

Additionally, this study will evaluate the impact of the

number of epochs and batch size on model performance, aiming

to determine the combination that yields the best accuracy. This

approach is expected to provide a comprehensive understanding

of the effectiveness of the developed model.

D. Implementation

The implementation of web shell detection will be directly

carried out by the researcher through an audit of a

predetermined web application. After the testing phase is

complete, the researcher will manually verify the findings to

ensure that the suspected files are indeed web shells. This

process aims to enhance detection accuracy and provide a

deeper understanding of the potential threats in the application.

III. RESULT AND DISCUSSION

A. Data Collection

The data collection process resulted in a total of 2918 files
labeled as "malicious" for web shells and 2793 files labeled as
"benign" for normal PHP scripts. Each sample is categorized
into two separate categories: "malicious" for web shells and
"benign" for normal PHP.

TABLE I. DATA SOURCE

Sample Source Amount

Web Shell
https://github.com/Cyc1e183/PHP

-Webshell-Dataset
2918

CMS/Framework

https://github.com/WordPress/Wo

rdPress
1447

https://github.com/smarty-

php/smarty
166

https://github.com/yiisoft/yii2 1036

B. Data Preprocessing

At this stage, the collected data will be processed. The data

preprocessing stage involves several steps:

1. PHP Opcode Extraction

The PHP opcode extraction stage is the initial step in data

preprocessing, where PHP files are converted into opcode using

the VLD (Vulcan Logic Dumper) extension. PHP files that are

erroneous or inaccessible will be removed. An example of the

PHP opcode extraction result can be seen in Figure 5 below.

Fig. 3: PHP Opcode Extraction Result

2. Tokenizing

In this process, numbers, punctuation, and other characters

irrelevant to PHP opcode processing will be removed. This

study utilizes the createToken function to filter opcodes using a

set of PHP opcode keywords. After tokenization, the data will

be stored in three columns: filename for the file name, result for

the tokenized opcode results, and status, which indicates the

security category with a value of 0 for malicious and 1 for

benign. The final dataset can be viewed in the figure below.

Fig. 4: Preprocessed Data

After removing duplicate data, the dataset consists of 2,216

benign entries (68.6%) and 1,018 malicious entries (31.4%).

The majority of the data is benign, with a smaller proportion of

malicious entries. The diagram below visualizes the balance

between benign and malicious categories in the cleaned dataset.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 330-336

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2234, Copyright ©2024

Submitted : July 26, 2024, Revised : August 26, 2024, Accepted : August 28, 2024, Published : November 20, 2024

333

Fig. 5: Data Distribution

C. Feature Extraction

In this stage, the textual data resulting from the preprocessing

step will be transformed into numeric representations

understandable by deep learning models. This process consists

of two key steps, primarily utilizing the Word2Vec model and

constructing an embedding matrix.

1. Word Embedding Generation

Feature extraction employs the Word2Vec model to generate

vector representations of words from the previously processed

opcodes. The Word2Vec method used is the Continuous Bag-

of-Words (CBOW) model with vector_size 100, window=10,

min_count=5.

2. Embedding Matrix

After obtaining vector representations for each word, the next

step is to construct an embedding matrix as the initialization

weights for the embedding layer in the deep learning model.

This process utilizes the Tokenizer from the Keras library to

convert text into numeric representations, where each number

represents a word in the dictionary. Once the text is converted

into sequences of numbers, pad_sequences() is applied to

ensure each sequence has a uniform length of 200 words.

Finally, the embedding matrix (embed_matrix) is created as the

embedding layer in the model, with dimensions corresponding

to the vocab_size (vocabulary size) and dimension (embedding

vector dimension).

D. Data Splitting

Fig. 6: Data Splitting

The model is divided using Keras's to_categorical function to

convert categorical values into one-hot encoding, where [1]

(benign) is converted to [0,1] and [0] (malicious) to [1,0]. The

data is then split using scikit-learn's train_test_split function

with test_size=0.20, so 20% of the data is used for testing and

80% for training.

E. Model Development

After the feature extraction stage is complete, the deep learning

model construction begins. Two types of models are developed:

a baseline CNN and an RNN with LSTM. The development

process includes model initialization and training.

1. Model Architecture

Fig. 7: CNN Model Architecture

 The described Convolutional Neural Network (CNN)

architecture begins with an input layer that receives text data in

the form of word vectors or embedding matrices. This data is

then processed by 1D convolutional layers, consisting of two

consecutive Conv1D layers, each with a kernel size of 5, 128

filters, and a ReLU activation function. These layers capture

local features from the text by performing one-dimensional

convolution. After convolution, a GlobalMaxPooling1D layer

is applied to reduce data dimensions by taking the maximum

value from each feature, which reduces the number of

parameters and helps prevent overfitting.

 Next, the model includes two consecutive Dense layers. The

first Dense layer has 128 units with a ReLU activation function

and a dropout rate of 0.5 to prevent overfitting. The second

Dense layer has 2 units with a sigmoid activation function,

suitable for binary classification. Dropout is applied between

these layers to reduce the risk of overfitting by randomly

ignoring a portion of neurons during training. The ReLU

activation function helps address the vanishing gradient

problem and speeds up convergence, while the sigmoid

activation function produces output in the range of 0 to 1.

Finally, the output layer generates the final predictions,

classifying the text into two categories, such as positive and

negative.

 Fig. 8: RNN With LSTM Model Architecture

 The RNN architecture with LSTM begins with the first layer

being the Embedding Layer, which transforms input word

indices into 50-dimensional vectors. With a specified input

length and input dimension of 93, this layer converts word

representations into a more meaningful form for further

processing. Next, an LSTM Layer with 256 units returns

sequences (return_sequences=True), allowing the model to

retain sequential information while applying L2 regularization

to the kernel, recurrent, and bias, and using the tanh activation

function to process and filter sequential information.

 Following that, a Dense Layer consists of 256 units, with a

kernel size of 256x256 and bias size of 256x1, applying a

max_norm(3) constraint on the kernel and bias and using the

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 330-336

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2234, Copyright ©2024

Submitted : July 26, 2024, Revised : August 26, 2024, Accepted : August 28, 2024, Published : November 20, 2024

334

ReLU activation function to introduce non-linearity. A Dropout

Layer is applied with a dropout rate of 0.5 to reduce overfitting

by randomly ignoring a portion of neurons during training,

enhancing model generalization. An additional Dense Layer

with a kernel size of 64x2 and bias size of 2x1 processes

features from the previous layers and prepares data for the

output layer. Finally, the Output Layer with 3 units determines

the model's final output dimensions, enabling predictions in

three different categories. The diagram visually illustrates how

various layers can be arranged and connected to form a complex

deep learning model.

2. Training Result

The model training is conducted by training the preprocessed

data prepared in the data preprocessing stage. This process

involves training over 20 epochs, meaning the entire training

dataset is processed 20 times. During each epoch, the data is

divided into small batches of size 64, allowing the model to be

updated gradually and efficiently.

The overall training results can be seen in Figure 11 for the

CNN model and Figure 12 for the RNN with LSTM model.

Fig. 9: Acuracy over epochs & loss over epochs CNN model

Fig. 10: Acuracy over epochs & loss over epochs RNN with LSTM Model

3. Testing Result

After the training process is completed, the model is then tested.

The data used for testing is the testing data prepared beforehand

in the preprocessing stage. The results of the testing can be seen

in Table II.

TABLE II. TESTING MODEL RESULT

Model Accuracy Loss

CNN 0.9876 0.0490

RNN + LSTM 0.9830 0.0731

CNN shows a lower loss value compared to RNN, 0.0490

versus 0.0731. A lower loss indicates that CNN is more

effective in minimizing prediction errors. Additionally, CNN

also achieved a higher accuracy of 98.76%, compared to

98.30% achieved by RNN. Higher accuracy indicates that CNN

is overall better in this classification context.

F. Evaluation

TABLE III. EVALUATION MATRIX

Matrix CNN Model RNN Model

Precision (kelas 0) 0.97 0.98

Recall (kelas 0) 0.99 0.96

F1-score (kelas 0) 0.98 0.97

Precision (keas 1) 1.00 0.98

Recall (kelas 1) 0.99 0.99

F1-Score (kelas 1) 0.99 0.99

Macro Average F1-Score 0.99 0.98

Weighted Average F1-

Score
0.99 0.98

In terms of precision, recall, and F1-score, CNN demonstrates

slightly better performance for class 0 (malicious), with a

precision of 0.97, recall of 0.99, and an F1-score of 0.98.

Conversely, RNN has a slightly higher precision of 0.98 for the

same class, but its recall is slightly lower at 0.96, resulting in an

F1-score of 0.97. For class 1 (benign), both models exhibit

nearly equivalent performance, but CNN has a slight edge in

precision and recall, with an F1-score of 0.99, compared to

RNN's F1-score of 0.98. Overall, CNN shows higher macro and

weighted average F1-scores of 0.99, compared to RNN's 0.98.

This indicates that CNN has more consistent and balanced

performance across all classes.

TABLE IV. CONFUSING MATRIX RESULT

Model Prediction
Actual

True False

CNN
True 452 (TP) 2 (FP)

False 6 (FN) 188 (TN)

RNN + LSTM True 453 (TP) 7 (FP)

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 330-336

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2234, Copyright ©2024

Submitted : July 26, 2024, Revised : August 26, 2024, Accepted : August 28, 2024, Published : November 20, 2024

335

False 4 (FN) 183 (TN)

The confusion matrix provides additional insights into the types

of errors made by each model. CNN shows fewer false positives

(2) compared to RNN (7), indicating that CNN is less likely to

incorrectly classify negative cases as positive. Additionally,

CNN has more true negatives (188) than RNN (183). However,

CNN also records more false negatives (6) compared to RNN

(4), suggesting that CNN misses true positive cases slightly

more often. True positives (451 for CNN and 453 for RNN) are

nearly equivalent, indicating that both models perform similarly

well in detecting positive cases.

In Table IV, the number of epochs and batch_size are also

compared to achieve the highest accuracy. For the CNN

algorithm, the highest accuracy achieved is 0.985468 (98.54%)

with 100 epochs and a batch size of 32. Meanwhile, for the

RNN algorithm, the highest accuracy obtained is 0.982743

(98.27%) with 70 epochs and a batch size of 32.

TABLE V. CONFUSING MATRIX RESULT

Epoch CNN RNN

32 64 128 32 64 128

10 0.98145

3

0.98145

3
0.982998 0.978362 0.97681

6
0.975270

20 0.98299

8

0.98454

4

0.982998 0.975270 0.98299

8

0.975270

30 0.98454

4

0.98454

4

0.986090 0.976816 0.97681

6

0.976816

40 0.98454

4

0.98299

8

0.982998 0.984544 0.97836

2

0.956723

50 0.98918

1

0.98763

5

0.984544 0.979907 0.98145

3

0.972179

60 0.98454

4

0.98609

0

0.986090 0.987635 0.97836

2

0.984544

70 0.98918

1

0.98609

0

0.987635 0.972179 0.98145

3

0.979907

80 0.97990

7

0.98454

4
0.987635 0.976816 0.98454

4
0.981453

90 0.97527

0

0.98454

4

0.984544 0.982998 0.98609

0

0.978362

100 0.98609

0

0.98609

0

0.986090 0.975270 0.98299

8

0.978362

In Table V, the number of epochs and batch_size are also

compared to achieve the highest accuracy. For the CNN

algorithm, the highest accuracy achieved is 0.989181 (98.91%)

with 50 epochs and a batch size of 32. Meanwhile, for the RNN

algorithm, the highest accuracy obtained is 0.987635 (98.76%)

with 60 epochs and a batch size of 32.

G. Implementation

Fig. 11: Insturctions for using the application

The command above will perform a check for web shells in the

directory /mnt/alumni. After the checking process is complete,

it will save logs named nama_directory_log.txt,

nama_directory_malicious.txt,and nama_directory_benign.txt.

Fig. 12: Results of web shell checking

From the implementation results, it is predicted that the

total number of web shells is 24, and the total number of benign

files is 1645. After manual inspection, one valid web shell was

found by this model.
Before you begin to format your paper, first write and save

the content as a separate text file. Keep your text and graphic
files separate until after the text has been formatted and styled.
Do not use hard tabs, and limit use of hard returns to only one
return at the end of a paragraph. Do not add any kind of
pagination anywhere in the paper. Do not number text heads-
the template will do that for you.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

IV. CONCLUSION

The results of testing and evaluating the CNN and RNN
with LSTM models for webshell detection show that CNN
performs slightly better compared to RNN + LSTM. CNN
achieves an accuracy of 98.76% and a loss of 0.0490, whereas
RNN + LSTM attains an accuracy of 98.30% and a loss of
0.0731. The lower loss for CNN indicates its superior ability to
minimize prediction errors.

In terms of precision, recall, and F1-score, CNN also excels,
particularly for class 0 (malicious) with a precision of 0.97,
recall of 0.99, and an F1-score of 0.98. In contrast, RNN
achieves a precision of 0.98, recall of 0.96, and an F1-score of
0.97. For class 1 (benign), although both models are nearly
equivalent, CNN slightly outperforms with higher precision and
recall, achieving an F1-score of 0.99 compared to RNN's 0.98.

Evaluation using the confusion matrix reveals that CNN has

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 330-336

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2234, Copyright ©2024

Submitted : July 26, 2024, Revised : August 26, 2024, Accepted : August 28, 2024, Published : November 20, 2024

336

fewer false positives (2) compared to RNN (7), indicating that
CNN is more accurate in classifying negative cases. However,
CNN records more false negatives (6) compared to RNN (4).

Overall, the CNN model proves superior in webshell
detection compared to RNN with LSTM, particularly in terms
of accuracy, loss, and evaluation metrics such as precision and
recall. This research successfully achieves its primary goal of
developing a deep learning model capable of detecting
webshells with high precision. Additionally, these findings
have the potential to enhance the security of web application
servers at ISB Atma Luhur by providing a more effective
solution for identifying and mitigating webshell threats

REFERENCES

[1] T. Sutabri, A. Wijaya, M. I. Herdiansyah, og E. S. Negara, “Evaluasi

Risiko Celah Keamanan Aplikasi E-Office menggunakan Metode

OWASP”, EDUMATIC, bd. Vol. 8 No. 1, s. 113–122, jun. 2024, doi:

10.29408/edumatic.v8i1.25463.

[2] P. D. Yuningsih og L. A. Utami, “Sistem Informasi Online Booking

Berbasis Web Pada Pheo Studi Salon”, JURNAL TEKNOINFO, bd. 18,

s. 193–200, 2024.

[3] S. Hartono og K. Khotimah, “Deteksi dan Mitigasi Serangan Backdoor

Menggunakan Python Watchdog”, Jurnal Sienna, bd. 3, s. 1, 2022.

[4] I. Putra, “Live Forensics untuk mengenali Karakteristik Serangan File

Upload Guna Meningkatkan Keamanan pada Web Server: Indonesia”,

jiip, bd. 6, nr. 6, s. 4387–4394, jun. 2023, doi: 10.54371/jiip.v6i6.2173.

[5] G. Tianmin, Z. Jiemin, og M. Jian, “Research on Webshell Detection

Method Based on Machine Learning”, i 2019 3rd International

Conference on Electronic Information Technology and Computer

Engineering (EITCE), Xiamen, China: IEEE, okt. 2019, s. 1391–1394.

doi: 10.1109/EITCE47263.2019.9094767.

[6] “GroboganKab-CSIRT”. Set: 26. august 2024. [Online]. Tilgængelig hos:

https://csirt.grobogan.go.id/posts/website-kampus-rentan-diserang-dan-

dijadikan-jadi-situs-judi-online

[7] C. N. Kamath, S. S. Bukhari, og A. Dengel, “Comparative Study between

Traditional Machine Learning and Deep Learning Approaches for Text

Classification”, i Proceedings of the ACM Symposium on Document

Engineering 2018, Halifax NS Canada: ACM, aug. 2018, s. 1–11. doi:

10.1145/3209280.3209526.

[8] M. Zulqarnain, R. Ghazali, Y. M. M. Hassim, og M. Rehan, “A

comparative review on deep learning models for text classification”,

IJEECS, bd. 19, nr. 1, s. 325, jul. 2020, doi:

10.11591/ijeecs.v19.i1.pp325-335.

[9] W. K. Sari, D. P. Rini, R. F. Malik, og I. S. B. Azhar, “Klasifikasi Teks

Multilabel pada Artikel Berita Menggunakan Long Short- Term Memory

dengan Word2Vec”, Jurnal RESTI, bd. 4, nr. 2, 2020.

[10] P. Semberecki og H. Maciejewski, “Deep Learning methods for Subject

Text Classification of Articles”, præsenteret ved 2017 Federated

Conference on Computer Science and Information Systems, Annals of

Computer Science and Information Systems, sep. 2017, s. 357–360. doi:

10.15439/2017F414.

[11] I. P. Putri, T. Terttiaavini, og N. Arminarahmah, “Analisis Perbandingan

Algoritma Machine Learning untuk Prediksi Stunting pada Anak:

Comparative Analysis of Machine Learning Algorithms for Predicting

Child Stunting”, MALCOM, bd. 4, nr. 1, s. 257–265, jan. 2024, doi:

10.57152/malcom.v4i1.1078.

[12] N.-H. Nguyen, V.-H. Le, V.-O. Phung, og P.-H. Du, “Toward a Deep

Learning Approach for Detecting PHP Webshell”, i Proceedings of the

Tenth International Symposium on Information and Communication

Technology - SoICT 2019, Hanoi, Ha Long Bay, Viet Nam: ACM Press,

2019, s. 514–521. doi: 10.1145/3368926.3369733.

[13] L. T. Flannelly, K. J. Flannelly, og K. R. B. Jankowski, “Independent,

Dependent, and Other Variables in Healthcare and Chaplaincy Research”,

Journal of Health Care Chaplaincy, bd. 20, nr. 4, s. 161–170, okt. 2014,

doi: 10.1080/08854726.2014.959374.

[14] A. Karunaratne, “How to dump and inspect PHP OPCodes”, PHP.Watch.

Set: 26. august 2024. [Online]. Tilgængelig hos:

https://php.watch/articles/php-dump-opcodes

[15] T. Mikolov, K. Chen, G. Corrado, og J. Dean, “Efficient Estimation of

Word Representations in Vector Space”, 6. september 2013, arXiv:

arXiv:1301.3781. Set: 25. juli 2024. [Online]. Tilgængelig hos:

http://arxiv.org/abs/1301.3781

[16] S. Sudianto, A. D. Sripamuji, I. R. Ramadhanti, R. R. Amalia, J. Saputra,

og B. Prihatnowo, “Penerapan Algoritma Support Vector Machine dan

Multi-Layer Perceptron pada Klasifikasi Topik Berita”, Jurnal Nasional

Pendidikan Teknik Informatika : JANAPATI, bd. 11, nr. 2, s. 84–91, aug.

2022.

