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Abstract— A web shell is a script executed on a web server, 

often used by hackers to gain control over an infected server. 

Detecting web shells is challenging due to their complex behavior 

patterns. This research focuses on using a deep learning approach 

to detect web shells on the ISB Atma Luhur web server, aiming to 

develop a model capable of precise detection. By training the 

model with labeled PHP files, malicious web shells are 

distinguished from benign files. The study is crucial for enhancing 

the server's security, preventing hacker attacks, and safeguarding 

sensitive data. Through preprocessing techniques such as opcode 

extraction and feature selection, useful pattern recognition for web 

shell detection is achieved. Training deep learning models like 

CNN and RNN with LSTM on processed data leads to accuracy 

evaluation using classification metrics. The CNN model 

demonstrates superior performance in detection, emphasizing the 

effectiveness of deep learning for web shell detection. The research 

contributes to enhancing security in web-based applications, 

protecting against cyber threats like web shells.. 
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I. INTRODUCTION 

A system is a collection of two or more components or 
subsystems that interact with each other to achieve a goal. In 
the context of an organization, a system comprises various 
components such as people, computers, information 
technology, and workflows. This system processes data into 
information to reach the established goals and objectives [1]. 

One notable application of this technology is web-based 
applications. These applications provide substantial benefits in 
terms of accessibility, as they can be accessed from any location 
and at any time, given that an internet connection and a web 
browser are available. Additionally, they eliminate the need for 
local installation, further enhancing their convenience and ease 
of use. [2].  

Although web-based applications offer advantages in terms 
of accessibility, they also face several cyber threats. One such 
threat is the web shell, which poses a serious security risk to 
web-based applications [3]. A web shell is a script that can be 
executed by a web server, granting the user who has access to 
the server the ability to execute commands. An example of this 
is a PHP shell, which represents a type of web-based shell 
implementation. When a PHP shell is successfully uploaded, it 
allows an attacker to take control of the system or perform 
malicious actions, leading to web shell attacks or remote code 

execution [4]. 

Web shells are typically used by malicious actors to gain 
full control over infected servers. Detecting web shells presents 
a significant challenge due to the complex and dynamic patterns 
of behavior exhibited by these scripts [5]. In this study, a deep 
learning approach is employed to detect web shells on the ISB 
Atma Luhur web application server. 

ISB Atma Luhur is also undergoing a migration process 
from desktop-based applications to web-based applications. 
This transition introduces new security challenges, including 
threats from web shells. Additionally, the increasing number of 
incidents involving web applications targeted by hacks and the 
dissemination of online gambling ads through web-based 
platforms underscores the critical need for enhanced security 
measures in web applications [6]. 

The primary objective of this research is to develop a deep 
learning model capable of detecting web shells with high 
precision. The choice of deep learning is based on previous 
studies comparing traditional machine learning and deep 
learning for text classification [7], [8]. This model will be 
trained using a labeled dataset of PHP files, where the label 
"malicious" indicates the presence of a web shell and the label 
"benign" indicates its absence. 

For this study, the models to be evaluated are Convolutional 
Neural Networks (CNN) and Recurrent Neural Networks 
(RNN) with Long Short-Term Memory (LSTM). Previous 
research has shown that LSTM models have achieved 
significant accuracy in similar contexts [9], [10] . Likewise, 
CNNs have proven effective for text classification based on 
prior studies [10]. By integrating these two approaches, it is 
anticipated that a deeper understanding of their application in 
this relevant context can be gained. 

This study will focus on comparing the accuracy levels 
between LSTM and CNN models. This approach is crucial for 
identifying the relative strengths of each model within the 
chosen application context [11]. By evaluating their 
performance, it is expected to reveal both the advantages and 
limitations of each model, as well as potential optimization 
strategies to enhance their effectiveness in complex text 
classification tasks. 

 In previous research, Tianmin [5] conducted a study 
on webshell detection using Machine Learning methods by 
applying opcode+N-Gram+TF-IDF for sample characterization 
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and algorithms such as XGBoost, MLP, RF, and NB for model 
training. The results showed that the optimal detection model 
based on the XGBoost algorithm achieved an accuracy of over 
97% under experimental conditions  

 Ngoc-Hoa [12] also proposed a model for detecting 
malicious code in PHP source files using a deep learning 
approach. This method involves pattern matching techniques by 
applying Yara rules to build malicious and benign datasets, 
converting PHP source code into numerical opcode sequences, 
and using a Convolutional Neural Network (CNN) model to 
predict whether a PHP file contains malicious code such as a 
webshell. Experimental results showed that the proposed 
method achieved an accuracy of 99.02% with a false positive 
rate of 0.85%. 

 This research is crucial for strengthening the security 
of the ISB Atma Luhur web application server. The results are 
expected to be used to protect the server from cyber threats and 
prevent damage to sensitive data.. 

II. RESEARCH METHODOLOGY 

This research was conducted from April to July at ISB 
Atmaluhur, located at JL. Jendral Sudirman, Pangkalpinang 
City, Bangka Belitung Islands Province. The research location 
was chosen due to its relevance to the research objectives and 
the availability of the necessary data. 

A. Research Variables 
The research variables for the study on web shell detection 

using a deep learning approach can be divided into two main 
categories: independent variables and dependent variables. The 
independent variables are the input factors in this research and 
are not influenced by other variables, such as opcode and 
opcode extraction features. The dependent variable is the label 
indicating whether the PHP code extracted from the opcode is 
malicious or benign [13]. 

B. Data Collection Methods 
In this research, data on web shells and normal PHP were 

downloaded from various available online sources. The web 
shells were collected from 17 project repositories, resulting in a 
total of 6021 web shells, which were then processed to 2918. 
The normal PHP files were sourced from CMS and several 
other open-source projects like WordPress, Yii2, Smarty, and 
CodeIgniter, in line with what is used at ISB Atma Luhur. The 
outcome was 2791 normal PHP files. 

C. Data Analysis Techniques 
In this research, data analysis techniques were implemented 

to detect the presence of web shells using a deep learning 
approach. An overview of the applied data analysis techniques 
can be seen in Figure 1. 

 

Fig 1. Research Flowchart 

1. Data Analysis Techniques 
At this stage, the collected PHP web shell files undergo a 

cleaning process. The objective is to extract PHP web shell files 
into opcodes in order to obtain a series of features that can 
detect potentially dangerous PHP web shells in the form of 
tokens. The preprocessing phase is illustrated in the figure. 

 

Fig 2. Preprocessing Data 

PHP files will be extracted through the process of opcode 

extraction. Opcodes are the basic machine instructions 

generated from PHP code after it has been compiled or 

interpreted [5], [14]. 

After the extraction process, tokenization is performed. 

During this process, numbers, punctuation, and other characters 

deemed irrelevant for opcode processing are removed. 

Tokenization is crucial in data preprocessing. 

2. Feature Selection 

Feature selection is a crucial step aimed at enhancing and 

optimizing the efficiency of algorithms by simplifying index 

evaluation. Given the many opcode features with limited 

vocabulary, which result in sparse word vectors, it is essential 

to trim unnecessary features to maintain computational 

efficiency without compromising performance. To achieve this, 

Word2Vec, a method for word representation in a 

multidimensional vector space proposed by Mikolov [15], will 

be utilized. Specifically, the Continuous Bag of Words 

(CBOW) architecture will be employed to build the vector 

model. 
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3. Model Development 

This process employs deep learning models to determine 

which model achieves the highest accuracy. The models 

considered are Convolutional Neural Networks (CNN) [10] and 

Recurrent Neural Networks (RNN) with Long Short-Term 

Memory (LSTM) [9], [10] for web shell detection. These 

models will be trained using the processed data, which will be 

divided into 80% training data and 20% testing data, to 

recognize patterns associated with web shells. 

Fig. 1: CNN Architecture 

 

Fig. 2: RNN with LSTM Architecture 

Fig 3 illustrates the architecture of a CNN consisting of 

several layers, starting with the input layer, followed by the 

Encoding layer, Conv1D, GlobalMaxPooling1D, two Dense 

layers, and finally the output layer. Fig 4 depicts the architecture 

of an RNN with LSTM, which includes the input layer, 

followed by the embedding layer, then the LSTM (Long Short-

Term Memory) block, and three Dense layers with activation 

functions applied after the LSTM and on each Dense layer. The 

final part is a Dense layer with activation function 3, 

representing the output layer of this network 

 

4. Validation and Evaluation 

After completing the training and testing phases, the next 

step is to perform validation and evaluation using commonly 

applied metrics in classification, namely accuracy, precision, 

recall, and F1-score. These metrics will assist in assessing the 

model's success in predicting labels with high accuracy and in 

understanding how well the model avoids potential prediction 

errors [16]. 

Additionally, this study will evaluate the impact of the 

number of epochs and batch size on model performance, aiming 

to determine the combination that yields the best accuracy. This 

approach is expected to provide a comprehensive understanding 

of the effectiveness of the developed model. 

D. Implementation 

The implementation of web shell detection will be directly 

carried out by the researcher through an audit of a 

predetermined web application. After the testing phase is 

complete, the researcher will manually verify the findings to 

ensure that the suspected files are indeed web shells. This 

process aims to enhance detection accuracy and provide a 

deeper understanding of the potential threats in the application. 

III. RESULT AND DISCUSSION 

A. Data Collection 

The data collection process resulted in a total of 2918 files 
labeled as "malicious" for web shells and 2793 files labeled as 
"benign" for normal PHP scripts. Each sample is categorized 
into two separate categories: "malicious" for web shells and 
"benign" for normal PHP. 

TABLE I.  DATA SOURCE 

Sample Source Amount 

Web Shell 
https://github.com/Cyc1e183/PHP

-Webshell-Dataset 
2918 

CMS/Framework 

https://github.com/WordPress/Wo

rdPress 
1447 

https://github.com/smarty-

php/smarty 
166 

https://github.com/yiisoft/yii2 1036 

B. Data Preprocessing 

At this stage, the collected data will be processed. The data 

preprocessing stage involves several steps: 

 

1. PHP Opcode Extraction 

The PHP opcode extraction stage is the initial step in data 

preprocessing, where PHP files are converted into opcode using 

the VLD (Vulcan Logic Dumper) extension. PHP files that are 

erroneous or inaccessible will be removed. An example of the 

PHP opcode extraction result can be seen in Figure 5 below. 

Fig. 3: PHP Opcode Extraction Result 

 

2. Tokenizing 

In this process, numbers, punctuation, and other characters 

irrelevant to PHP opcode processing will be removed. This 

study utilizes the createToken function to filter opcodes using a 

set of PHP opcode keywords. After tokenization, the data will 

be stored in three columns: filename for the file name, result for 

the tokenized opcode results, and status, which indicates the 

security category with a value of 0 for malicious and 1 for 

benign. The final dataset can be viewed in the figure below. 

Fig. 4: Preprocessed Data 

 

After removing duplicate data, the dataset consists of 2,216 

benign entries (68.6%) and 1,018 malicious entries (31.4%). 

The majority of the data is benign, with a smaller proportion of 

malicious entries. The diagram below visualizes the balance 

between benign and malicious categories in the cleaned dataset. 
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Fig. 5: Data Distribution 

 

C. Feature Extraction 

In this stage, the textual data resulting from the preprocessing 

step will be transformed into numeric representations 

understandable by deep learning models. This process consists 

of two key steps, primarily utilizing the Word2Vec model and 

constructing an embedding matrix. 

 

1. Word Embedding Generation 

Feature extraction employs the Word2Vec model to generate 

vector representations of words from the previously processed 

opcodes. The Word2Vec method used is the Continuous Bag-

of-Words (CBOW) model with vector_size 100, window=10, 

min_count=5.  

2. Embedding Matrix 

After obtaining vector representations for each word, the next 

step is to construct an embedding matrix as the initialization 

weights for the embedding layer in the deep learning model. 

This process utilizes the Tokenizer from the Keras library to 

convert text into numeric representations, where each number 

represents a word in the dictionary. Once the text is converted 

into sequences of numbers, pad_sequences() is applied to 

ensure each sequence has a uniform length of 200 words. 

Finally, the embedding matrix (embed_matrix) is created as the 

embedding layer in the model, with dimensions corresponding 

to the vocab_size (vocabulary size) and dimension (embedding 

vector dimension). 

 

D. Data Splitting 

Fig. 6: Data Splitting 

 

The model is divided using Keras's to_categorical function to 

convert categorical values into one-hot encoding, where [1] 

(benign) is converted to [0,1] and [0] (malicious) to [1,0]. The 

data is then split using scikit-learn's train_test_split function 

with test_size=0.20, so 20% of the data is used for testing and 

80% for training. 

E. Model Development 

After the feature extraction stage is complete, the deep learning 

model construction begins. Two types of models are developed: 

a baseline CNN and an RNN with LSTM. The development 

process includes model initialization and training. 

1. Model Architecture 

Fig. 7: CNN Model Architecture 

 The described Convolutional Neural Network (CNN) 

architecture begins with an input layer that receives text data in 

the form of word vectors or embedding matrices. This data is 

then processed by 1D convolutional layers, consisting of two 

consecutive Conv1D layers, each with a kernel size of 5, 128 

filters, and a ReLU activation function. These layers capture 

local features from the text by performing one-dimensional 

convolution. After convolution, a GlobalMaxPooling1D layer 

is applied to reduce data dimensions by taking the maximum 

value from each feature, which reduces the number of 

parameters and helps prevent overfitting. 

 Next, the model includes two consecutive Dense layers. The 

first Dense layer has 128 units with a ReLU activation function 

and a dropout rate of 0.5 to prevent overfitting. The second 

Dense layer has 2 units with a sigmoid activation function, 

suitable for binary classification. Dropout is applied between 

these layers to reduce the risk of overfitting by randomly 

ignoring a portion of neurons during training. The ReLU 

activation function helps address the vanishing gradient 

problem and speeds up convergence, while the sigmoid 

activation function produces output in the range of 0 to 1. 

Finally, the output layer generates the final predictions, 

classifying the text into two categories, such as positive and 

negative.  

 

 Fig. 8: RNN With LSTM Model Architecture 
 

 The RNN architecture with LSTM begins with the first layer 

being the Embedding Layer, which transforms input word 

indices into 50-dimensional vectors. With a specified input 

length and input dimension of 93, this layer converts word 

representations into a more meaningful form for further 

processing. Next, an LSTM Layer with 256 units returns 

sequences (return_sequences=True), allowing the model to 

retain sequential information while applying L2 regularization 

to the kernel, recurrent, and bias, and using the tanh activation 

function to process and filter sequential information. 

 Following that, a Dense Layer consists of 256 units, with a 

kernel size of 256x256 and bias size of 256x1, applying a 

max_norm(3) constraint on the kernel and bias and using the 
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ReLU activation function to introduce non-linearity. A Dropout 

Layer is applied with a dropout rate of 0.5 to reduce overfitting 

by randomly ignoring a portion of neurons during training, 

enhancing model generalization. An additional Dense Layer 

with a kernel size of 64x2 and bias size of 2x1 processes 

features from the previous layers and prepares data for the 

output layer. Finally, the Output Layer with 3 units determines 

the model's final output dimensions, enabling predictions in 

three different categories. The diagram visually illustrates how 

various layers can be arranged and connected to form a complex 

deep learning model. 

 

2. Training Result 

The model training is conducted by training the preprocessed 

data prepared in the data preprocessing stage. This process 

involves training over 20 epochs, meaning the entire training 

dataset is processed 20 times. During each epoch, the data is 

divided into small batches of size 64, allowing the model to be 

updated gradually and efficiently. 

The overall training results can be seen in Figure 11 for the 

CNN model and Figure 12 for the RNN with LSTM model. 

 

Fig. 9: Acuracy over epochs & loss over epochs CNN model 

 

Fig. 10: Acuracy over epochs & loss over epochs RNN with LSTM Model 

 

 

3. Testing Result 

After the training process is completed, the model is then tested. 

The data used for testing is the testing data prepared beforehand 

in the preprocessing stage. The results of the testing can be seen 

in Table II. 

TABLE II.  TESTING MODEL RESULT 

Model Accuracy Loss 

CNN 0.9876 0.0490 

RNN + LSTM 0.9830 0.0731 

 

CNN shows a lower loss value compared to RNN, 0.0490 

versus 0.0731. A lower loss indicates that CNN is more 

effective in minimizing prediction errors. Additionally, CNN 

also achieved a higher accuracy of 98.76%, compared to 

98.30% achieved by RNN. Higher accuracy indicates that CNN 

is overall better in this classification context. 

 

F. Evaluation 

TABLE III.  EVALUATION MATRIX 

Matrix CNN Model RNN Model 

Precision (kelas 0) 0.97 0.98 

Recall (kelas 0) 0.99 0.96 

F1-score (kelas 0) 0.98 0.97 

Precision (keas 1) 1.00 0.98 

Recall (kelas 1) 0.99 0.99 

F1-Score (kelas 1) 0.99 0.99 

Macro Average F1-Score 0.99 0.98 

Weighted Average F1-

Score 
0.99 0.98 

 

In terms of precision, recall, and F1-score, CNN demonstrates 

slightly better performance for class 0 (malicious), with a 

precision of 0.97, recall of 0.99, and an F1-score of 0.98. 

Conversely, RNN has a slightly higher precision of 0.98 for the 

same class, but its recall is slightly lower at 0.96, resulting in an 

F1-score of 0.97. For class 1 (benign), both models exhibit 

nearly equivalent performance, but CNN has a slight edge in 

precision and recall, with an F1-score of 0.99, compared to 

RNN's F1-score of 0.98. Overall, CNN shows higher macro and 

weighted average F1-scores of 0.99, compared to RNN's 0.98. 

This indicates that CNN has more consistent and balanced 

performance across all classes. 

TABLE IV.  CONFUSING MATRIX RESULT 

Model Prediction 
Actual 

True False 

CNN 
True 452 (TP) 2 (FP) 

False 6 (FN) 188 (TN) 

RNN + LSTM True 453 (TP) 7 (FP) 
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False 4 (FN) 183 (TN) 

 

The confusion matrix provides additional insights into the types 

of errors made by each model. CNN shows fewer false positives 

(2) compared to RNN (7), indicating that CNN is less likely to 

incorrectly classify negative cases as positive. Additionally, 

CNN has more true negatives (188) than RNN (183). However, 

CNN also records more false negatives (6) compared to RNN 

(4), suggesting that CNN misses true positive cases slightly 

more often. True positives (451 for CNN and 453 for RNN) are 

nearly equivalent, indicating that both models perform similarly 

well in detecting positive cases.  

In Table IV, the number of epochs and batch_size are also 

compared to achieve the highest accuracy. For the CNN 

algorithm, the highest accuracy achieved is 0.985468 (98.54%) 

with 100 epochs and a batch size of 32. Meanwhile, for the 

RNN algorithm, the highest accuracy obtained is 0.982743 

(98.27%) with 70 epochs and a batch size of 32. 

TABLE V.  CONFUSING MATRIX RESULT 

Epoch CNN RNN 

32 64 128 32 64 128 

10 0.98145

3 

0.98145

3 
0.982998 0.978362 0.97681

6 
0.975270 

20 0.98299

8 

0.98454

4 

0.982998 0.975270 0.98299

8 

0.975270 

30 0.98454

4 

0.98454

4 

0.986090 0.976816 0.97681

6 

0.976816 

40 0.98454

4 

0.98299

8 

0.982998 0.984544 0.97836

2 

0.956723 

50 0.98918

1 

0.98763

5 

0.984544 0.979907 0.98145

3 

0.972179 

60 0.98454

4 

0.98609

0 

0.986090 0.987635 0.97836

2 

0.984544 

70 0.98918

1 

0.98609

0 

0.987635 0.972179 0.98145

3 

0.979907 

80 0.97990

7 

0.98454

4 
0.987635 0.976816 0.98454

4 
0.981453 

90 0.97527

0 

0.98454

4 

0.984544 0.982998 0.98609

0 

0.978362 

100 0.98609

0 

0.98609

0 

0.986090 0.975270 0.98299

8 

0.978362 

 

In Table V, the number of epochs and batch_size are also 

compared to achieve the highest accuracy. For the CNN 

algorithm, the highest accuracy achieved is 0.989181 (98.91%) 

with 50 epochs and a batch size of 32. Meanwhile, for the RNN 

algorithm, the highest accuracy obtained is 0.987635 (98.76%) 

with 60 epochs and a batch size of 32. 

 

G. Implementation 

Fig. 11: Insturctions for using the application 

 

The command above will perform a check for web shells in the 

directory /mnt/alumni. After the checking process is complete, 

it will save logs named nama_directory_log.txt, 

nama_directory_malicious.txt,and nama_directory_benign.txt. 

Fig. 12: Results of web shell checking 

From the implementation results, it is predicted that the 

total number of web shells is 24, and the total number of benign 

files is 1645. After manual inspection, one valid web shell was 

found by this model. 
Before you begin to format your paper, first write and save 

the content as a separate text file. Keep your text and graphic 
files separate until after the text has been formatted and styled. 
Do not use hard tabs, and limit use of hard returns to only one 
return at the end of a paragraph. Do not add any kind of 
pagination anywhere in the paper. Do not number text heads-
the template will do that for you. 

Finally, complete content and organizational editing before 
formatting. Please take note of the following items when 
proofreading spelling and grammar: 

IV. CONCLUSION 

The results of testing and evaluating the CNN and RNN 
with LSTM models for webshell detection show that CNN 
performs slightly better compared to RNN + LSTM. CNN 
achieves an accuracy of 98.76% and a loss of 0.0490, whereas 
RNN + LSTM attains an accuracy of 98.30% and a loss of 
0.0731. The lower loss for CNN indicates its superior ability to 
minimize prediction errors. 

In terms of precision, recall, and F1-score, CNN also excels, 
particularly for class 0 (malicious) with a precision of 0.97, 
recall of 0.99, and an F1-score of 0.98. In contrast, RNN 
achieves a precision of 0.98, recall of 0.96, and an F1-score of 
0.97. For class 1 (benign), although both models are nearly 
equivalent, CNN slightly outperforms with higher precision and 
recall, achieving an F1-score of 0.99 compared to RNN's 0.98. 

Evaluation using the confusion matrix reveals that CNN has 
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fewer false positives (2) compared to RNN (7), indicating that 
CNN is more accurate in classifying negative cases. However, 
CNN records more false negatives (6) compared to RNN (4). 

Overall, the CNN model proves superior in webshell 
detection compared to RNN with LSTM, particularly in terms 
of accuracy, loss, and evaluation metrics such as precision and 
recall. This research successfully achieves its primary goal of 
developing a deep learning model capable of detecting 
webshells with high precision. Additionally, these findings 
have the potential to enhance the security of web application 
servers at ISB Atma Luhur by providing a more effective 
solution for identifying and mitigating webshell threats 
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