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Abstract— Nowadays, malaria has become an infectious 

disease with a high mortality rate. One way to detect malaria is 

through microscopic examination of blood preparations, which is 

done by experts and often takes a long time. With the development 

of deep learning technology, the observation of blood cell images 

infected with malaria can be more easily done. Therefore, this 

study proposes a red blood cell image-based malaria detection 

system using the EfficientNet method with hyperparameter 

tuning. There are three parameters which are learning rate, 

activation function, and optimiser. The learning rate used is 0.01 

and 0.001, while the activation functions used are ReLU and Tanh. 

In addition, the optimisers used include Adam, SGD, and 

RMSProp. In the implementation, the cell image dataset from the 

NIH repository was pre-processed such as resizing, rotating, 

filtering, and data augmentation. Then the data is trained and 

tested on several EfficientNet models (B0, B1, B3, B5, and B7) and 

their performance values are compared. Based on the test results, 

EfficientNet-B5 and B7 models showed the best performance 

compared to other EfficientNet models. The most optimal system 

test results are when the EfficientNet B5 model is used with a 

learning rate of 0.001, ReLU activation function, and Adam 

optimiser, with values of 97.69% (accuracy), 98.36% (precision), 

and 97.03% (recall). This research has proven that proper model 

selection and hyperparameter tuning can maximise the 

performance of cell image-based malaria detection system. The 

development of this EfficientNet-based diagnostic method is more 

sensitive and specific in malaria detection using RBCs. 

Keywords— Malaria Detection, Red Blood Cell Image, 

EfficientNet, Hyperparameter Tuning, Model Performance 

I. INTRODUCTION 

In 2023, malaria remains a serious global health problem, 
with more than 249 million cases and approximately 619,000 
deaths reported in the previous year. Sub-Saharan Africa is the 
most affected region, with more than 95% of all global cases 
and deaths occurring in this region [1]. Countries such as 
Nigeria, the Democratic Republic of Congo and Tanzania 
account for the majority of the malaria burden [2]. While 
prevention efforts such as the distribution of insecticide-treated 
bed nets and the introduction of the RTS,S/AS01 malaria 
vaccine have been implemented, significant challenges remain, 
including resistance to drugs and insecticides, as well as the 
impact of climate change exacerbating the situation [3]. There 

are many challenges in malaria detection efforts. One of the 
main challenges in malaria detection is the reliability of the 
blood tests used for diagnosis. Although blood tests, such as 
Rapid Diagnostic Tests (RDTs) and microscopic examination 
[4-6], are the most commonly used methods, there are some 
significant challenges related to their accuracy and applicability 
in the field.  

Microscopic examination, considered the gold standard, 
requires specialised expertise and adequate infrastructure, 
which is often not available in remote areas. In addition, factors 
such as blood sample quality, training of laboratory personnel, 
and equipment used can affect the accuracy of test results [7]. 
Rapid Diagnostic Tests (RDTs), which are easier to use and do 
not require a specialised laboratory, also face challenges 
regarding their sensitivity and specificity, especially in 
detecting infections with low parasitemia [8]. Parasite 
resistance to drugs can also affect test results, where resistant 
parasites may not be detected correctly [9]. In some areas, the 
accuracy of detecting resistant parasites is reduced because 
health workers may not be trained to use diagnostic tools 
correctly. The challenge of accurate and reliable methods to 
detect resistant malaria parasites is not properly recognised and 
can lead to delays in treatment and potentially increase the risk 
of death. Overcoming this challenge will require increased 
development of more sensitive and specific diagnostic methods, 
as well as increased access to more advanced technologies. 
These challenges point to the need for further research to 
develop more accurate and reliable detection methods, as well 
as improved infrastructure and training in areas most affected 
by malaria. 

There have also been many studies related to Malaria 
detection based on red blood cell images (taken from 
microscope observations). Hemachandran, et al [10] proposed 
a machine learning-based malaria detection system on red 
blood smears. A total of 27,558 blood smear image data, 
consisting of 13,778 uninfected images and 13,780 infected 
images were used in this study. The models used include 
ResNet50, MobileNetV2, and CNN. As a result, the 
MobileNetV2 model was able to show the most optimal 
detection performance, with an accuracy rate of 97.06%. In 
addition to accuracy parameters, evaluation metrics such as 
precision, recall, f1-score, and ROC were also used to validate 
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the model test results. In their research, Mujahid et al [11] also 
proposed malaria detection based on Deep Learning 
EfficientNet. This model is considered capable of automatically 
extracting low- and high-level features in blood smear images 
to detect malaria parasites. In addition, K-Fold Cross Validation 
was also utilised to validate the results of the proposed model. 
As a result, the model has an accuracy rate of 97.57% in 
detecting malaria based on red blood smear images.  

Asiya, et al [12] successfully proposed a malaria detection 
system using deep learning on infected and uninfected RBC 
image datasets. This dataset is obtained from the publicly 
accessible Kaggle Repository. The deep learning models used 
were CNN, Inception ResNet-v2, ResNet-101, Inception-v3, 
and VGG19. As a result, the ResNet-v2 model shows the best 
accuracy rate of 95.4%. The system proposed by Jameela et al 
[13] was also able to detect malaria quite accurately. Red blood 
smear images are used as input to CNN models such as 
ResNet34, ResNet50, VGG-16, and VGG-19 to detect 
Plasmodium parasites that cause malaria. In this study, the 
before and after fine-tuning results on test data using several 
models were compared. The results obtained the best accuracy 
rate reached 96.09% (before fine-tuning was applied) and 
97.20% (after fine-tuning was applied) on the VGG19 model. 

Based on several previous studies, this research will also 
propose a red blood cell smear-based malaria detection system 
using the EfficientNet model approach. The novelty of this 
study compared to previous studies is the use of hyperparameter 
tuning on several types of EfficientNet models for RBC-based 
malaria detection. Hyperparameter settings are performed on 
the learning rate, optimizer, and activation function of 
EfficientNet to obtain optimal detection system performance. 
The EfficientNet model has several types of architecture 
ranging from EfficientNet B0 to B7, where the higher the block 
(B) used, the more parameters will be generated. However, only 
EfficientNet B0, B1, B3, B5, and B7 are used in this study. The 
system performance will be observed based on its evaluation 
matrix value, such as accuracy, precision, and recall. 

II. METHODOLOGY 

This research uses the EfficientNet model approach to 
automatically distinguish red blood cell images infected with 
the parasite that causes Malaria. The EfficientNet model will 
work based on the hyperparameter settings on the architecture 
used. Therefore, to realise the red blood cell image-based 
malaria detection system, there are several steps that are carried 
out starting from collecting RBC data, pre-processing data, 
EfficientNet modelling, system testing, and model evaluation. 
Below is a flow chart of the research stages. 

 

Figure 1. Methodology Research 

A. Data Collection 

This research uses red blood cell images infected with 
Plasmodium falciparum, which are stored in the National 
Institutes of Health (NIH) repository [14]. The Malaria RBC 
dataset from the National Institutes of Health (NIH) repository 
is one of the most widely used datasets in malaria detection 
research using machine learning and deep learning. This dataset 
contains thousands of microscopic images of red blood cells 
(RBCs) that have been classified into two main categories: red 
blood cells infected with malaria parasites and healthy red 
blood cells. A total of 27,560 images of red blood samples were 
used in this study (13,780 normal blood samples and 13,780 
parasite-infected red blood samples). Each image was taken 
using an optical microscope and stained with a special dye to 
clarify the structure of the parasites in the red blood cells. This 
dataset is very important as it provides high-quality data that 
can be used to train and test machine learning models to detect 
malaria with high accuracy. The availability of clear 
annotations and a large amount of data allows the development 
of robust and reliable models for clinical applications. Below 
are some examples of normal and parasite-infected red blood 
cell image samples 

 

Figure 2. Red Blood Cell Image 

B. . Data Pre-Processing 

Resizing the red blood cell image for malaria detection is an 
important step in data pre-processing. Resizing changes the size 
of the image to suit the needs of deep learning models, which 
often require input images with specific dimensions [15]. By 
ensuring all images are of a consistent size, this process helps in 
standardising the data, allowing the model to analyse each image 
in a uniform manner without being compromised by size 
variations [16]. In addition, resizing also allows for more 
efficient use of memory and computation, which is important 
when handling large datasets [17]. Image rotation is a subset of 
data augmentation techniques that aims to increase the variety in 
a dataset without increasing the number of original images [18]. 
In the context of malaria detection, rotation can be applied to red 
blood cell images to simulate various cell orientations that may 
be encountered in real practice [19]. By rotating at different 
angles, the model is trained to recognise malaria parasites 
regardless of image orientation. This improves the robustness of 
the model and helps in overcoming the problem of overfitting by 
providing more data variations to learn from [20]. 

Filtering is a technique used to improve image quality by 
removing noise or disturbances that may obscure important 
features in red blood cell images [21]. Filters such as Gaussian 
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or median are often used to smooth the image, reduce noise, and 
retain relevant details [22]. In malaria detection, filtering helps 
to ensure that important features such as the shape and texture of 
red blood cells and the presence of parasites are clearly visible 
to the model [23]. Together with other data augmentation 
techniques such as resizing and rotating, filtering helps to create 
a cleaner and more variety-rich dataset, which ultimately 
improves the performance of the model in detecting malaria with 
higher accuracy [24]. 

C. EfficientNet Architecture 

EfficientNet is a convolutional network architecture (CNN) 
introduced by Google AI to achieve a balance between 
performance and computational efficiency in computer vision 
tasks, such as image classification [25]. It is based on the simple 
yet effective idea of scaling the model proportionally in three 
main dimensions: depth, width, and resolution [26]. Unlike 
traditional approaches that only scale up one dimension, 
EfficientNet combines these three aspects using a method called 
"compound scaling," which results in significant performance 
improvements without requiring a large increase in the number 
of parameters [27]. EfficientNet achieves state-of-the-art 
performance in various benchmarks with a lower number of 
parameters and computation than previous models, making it a 
popular choice in applications that require high efficiency, such 
as mobile devices and edge computing [28].  

EfficientNet consists of eight models, EfficientNet B0 to 
EfficientNet B7, built on the principle of compound scaling [29]. 
EfficientNet B0 is the base model in the series and serves as a 
starting point for the development of more complex models [30]. 
B0 is designed using the neural architecture search (NAS) 
technique, which automatically finds the optimal architecture 
with a minimal number of parameters and computation [31]. 
Despite being the smallest model in the series, B0 still 
demonstrates competitive performance across a wide range of 
computer vision tasks, making it ideal for applications that 
require high computational efficiency [32]. 

As the scale increases from EfficientNet B1 to B7, each 
model is optimised by incorporating proportional increases in 
depth, width and resolution. For example, B1 has more layers 
and neurons in each layer compared to B0, and processes images 
with higher resolution [33]. These improvements continue up to 
B7, which is the largest and most complex model in the series, 
with much higher depth, width, and resolution, allowing it to 
achieve very high accuracy on benchmarks such as ImageNet 
[34]. However, with the increased size and complexity, the B7 
also requires more computing power and memory, making it 
more suitable for environments with larger computing resources, 
such as servers and data centres [35]. 

EfficientNet's success lies in its efficiency and scalability. 
Each model from B0 to B7 is designed to deliver the best 
performance under specific computing constraints, allowing 
users to choose the model that best suits their specific 
application needs [36]. If efficiency and power consumption are 
priorities, models such as B0 or B1 may be more suitable. On 
the other hand, if accuracy is the top priority and computational 
resources are not an issue, then models such as B6 or B7 could 
be the right choice [37]. Thus, the EfficientNet architecture 

provides a flexible solution for various needs in image 
recognition and computer vision tasks. 

The most fundamental part of a neural network is the stem, 
followed by the construction of the architecture starting with 
the eight blocks and then the final layers [38]. Each block is 
composed of several sub-blocks (modules) that vary and 
continue to grow from EfficientNet-B0 to EfficientNet-B7 [39]. 
The architecture of the stem, final layers, and sub-block is 
shown in the following figure. 

 

Figure 3. EfficientNet Stem and Final Layers Architecture 

 

 

Figure 4.Sub-block Architecture of EfficientNet 

Each component (stem, final layers, and sub-blocks) has a 
specific role in image processing and feature learning, which 
ultimately allows the model to achieve optimal results in various 
computer vision tasks [40]. The stem function in EfficientNet is 
the initial part of the network that is responsible for processing 
the raw image input into an initial feature representation that can 
be processed by the deeper network [41]. Typically, this stem 
function consists of an initial convolutional layer that has filters 
of large size (e.g. 3x3) and stride greater than 1, which aims to 
reduce the spatial dimension of the input image while extracting 
basic features such as edges, texture, and simple patterns [42]. 
This stem function helps to simplify the raw image into a more 
compact feature representation, which will then be further 
processed by subsequent blocks in the network [43]. 

Sub-blocks in EfficientNet are the main processing units 
consisting of multiple convolutional layers and other non-linear 
operations, such as batch normalisation and activation functions 
(e.g., ReLU or Swish) [44]. These sub-blocks are based on the 
Mobile Inverted Bottleneck Convolution (MBConv) adapted 
from the MobileNetV2 architecture. Each sub-block serves to 
extract and learn more complex features from the input image 
through a series of efficient convolutional operations [45]. 
MBConv utilises a depthwise separable convolution technique, 
which separates spatial and channel convolutions, thus reducing 
the number of parameters and computation without 
compromising accuracy. Sub-blocks are also often equipped 
with squeeze-and-excitation (SE) modules, which help the 
model to attend to important features by reweighting channels 
based on their relevance to the task at hand [46]. 
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The final layers in EfficientNet are the last layers of the 
network that are responsible for condensing the features learnt 
throughout the network into outputs that are suitable for a 
particular task, such as classification or object detection [47]. 
Typically, these final layers consist of global average pooling 
that reduces the spatial dimension of the feature map to a one-
dimensional vector, followed by a fully connected layer that 
generates the final prediction [48]. At this stage, the information 
that has been processed by the entire network is synthesised into 
a final decision, such as a class label in the case of image 
classification [49]. These final layers are designed to combine 
all the previously learnt features in an optimal way, so that the 
model can produce output with high accuracy. With the 
combination of stem functions for initial feature extraction, sub-
blocks for complex and efficient feature learning, and final 
layers for final decision making, EfficientNet is able to achieve 
high performance with significant computational efficiency 
[50]. Each of these components is designed to work together 
harmoniously, ensuring that the model can process images 
quickly and accurately in various computer vision applications 
[51]. 

D. Hyperparameter Tuning and Model Evaluation 

To optimise EfficientNet's performance, hyperparameter 
tuning can include adjustments to these scale factors, such as the 
scaling coefficient which determines how large the model is 
scaled up or down, as well as other hyperparameters such as 
learning rate, batch size, and regularization [52]. This tuning 
process is important to find the right balance between accuracy 
and computational efficiency, as EfficientNet is designed to 
deliver superior performance with lower computational 
resources than other larger models [53]. In this research, 
hyperparameter tuning is performed by varying the type of 
activation function and optimiser used by the EfficientNet 
model. In addition, the learning rate was also changed to see the 
performance of the model. The following are the 
hyperparameter tuning scenarios on the EfficientNet model 
tested in the study. 

TABLE I.  HYPERPARAMETER TUNING ON THE EFFICIENTNET MODEL 

Model 

EfficientNet 
B0, B1, B3, B5, B7 

Epoch 15 

Optimizer 

SGD, 

Adam, 

RMSProp 

Learning Rate 
0.01, 

0.001 

Activation Function 
ReLU, 

Tanh 

 
In addition, model evaluation is also conducted to measure 

the performance of EfficientNet. This evaluation is usually done 
using certain metrics such as accuracy, precision, and recall to 
measure how well the model is able to detect results on data that 
has never been seen before (validation data or test set). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 
Accuracy measures the percentage of correct predictions out of 

all predictions, giving a general idea of model performance, but 

can be misleading on unbalanced datasets. Precision measures 

the precision of positive predictions, i.e. how many positive 

predictions are correct compared to all positive predictions 

made, important when false positives are to be minimised. 

Recall, on the other hand, measures the sensitivity of the model 

or its ability to detect all true positive instances, crucial when 

not missing positive predictions is a priority. These three 

metrics are often used together to provide a deeper 

understanding of the model's performance in various contexts. 

III. RESULTS AND DISCUSSION 

This research aims to obtain a red blood cell image-based 
malaria detection model that has optimal system performance. 
Therefore, several EfficientNet architectures (B0, B1, B3, B5, 
and B7) are proposed in this study. Each EfficientNet 
architecture is then tuned with hyperparameters by changing the 
learning rate (0.01 and 0.001), activation function type (ReLU 
and Tanh), and optimiser type (Adam, SGD, and RMSProp). 
Based on the results of hyperparameter tuning and model 
testing, the performance metrics are obtained as shown in the 
following table. 

TABLE II.  PERFORMANCE METRICS OF EFFICIENTNET MODEL WITH 

LEARNING RATE = 0.01 AND ACTIVATION FUNCTION = RELU 

Optimizer Model Accuracy Precision Recall 

Adam 

B0 94.69 97.78 91.52 

B1 94.97 98.17 91.72 

B3 95.65 98.75 92.53 

B5 96.73 98.24 95.23 

B7 96.24 98.67 93.79 

SGD 

B0 94.47 97.59 91.26 

B1 94.69 97.79 91.53 

B3 95.37 98.56 92.18 

B5 96.51 97.87 95.13 

B7 95.96 98.39 93.51 

RMSProp 

B0 94.33 97.31 91.25 

B1 94.60 97.78 91.36 

B3 95.28 98.27 92.25 

B5 96.42 97.78 95.05 

B7 96.10 98.58 93.62 
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Table 2 shows the performance metrics of EfficientNet B0 
to B7 with learning rate 0.01 and ReLU activation function. 
When the optimiser used is Adam (Adaptive Moment 
Estimation), the Efficient B5 model shows accuracy, precision 
and recall rates of 96.73%, 98.24% and 95.23%. Similarly, 
when the optimiser used was SGD (Stochastic Gradient 
Descent), EfficientNet B5 showed performance values of 
96.51% (accuracy), 97.87% (precision), and 95.13% (recall). 
Another optimiser, RMSProp (Root Mean Square Propagation) 
was also used in testing this model (EfficientNet B5). As a 
result, the accuracy, precision, and recall values from system 
testing reached 96.42%, 97.78%, and 95.05%. So EfficientNet 
B5 is the most optimal model compared to other EfficientNet 
models, when setting the learning rate = 0.01 and the activation 
function is ReLU. 
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TABLE III.  PERFORMANCE METRICS OF EFFICIENTNET MODEL WITH 

LEARNING RATE = 0.001 AND ACTIVATION FUNCTION = RELU 

Optimizer Model Accuracy Precision Recall 

Adam 

B0 96.83 97.19 96.49 

B1 97.23 98.08 96.40 

B3 97.01 97.63 96.40 

B5 97.69 98.36 97.03 

B7 97.60 98.00 97.21 

SGD 

B0 96.46 96.83 96.13 

B1 97.05 97.80 96.31 

B3 96.87 97.54 96.22 

B5 97.51 98.26 96.76 

B7 97.46 97.82 97.12 

RMSProp 

B0 96.05 96.38 95.77 

B1 96.83 97.62 96.04 

B3 96.73 97.53 95.96 

B5 97.41 97.91 96.93 

B7 97.46 97.91 97.03 

 

Table 3 shows the performance metrics of EfficientNet B0 
to B7 with learning rate 0.001 and activation function ReLU. 
When the optimiser used is Adam, the Efficient B5 model 
shows accuracy, precision and recall rates of 97.69%, 98.36% 
and 97.03%, respectively. Similarly, when the optimiser used 
was SGD, EfficientNet B5 showed performance values of 
97.51% (accuracy), 98.26% (precision), and 96.76% (recall). 
However, when the optimiser used is RMSProp, EfficientNet 
B7 shows the optimal performance values, namely 97.46%, 
97.91%, and 97.03%. In general, from the results of system 
testing, it can be seen that there is an increase in the 
performance value of accuracy, precision, and recall when the 
learning rate is changed from the previous 0.01 to 0.001. 

TABLE IV.  PERFORMANCE METRICS OF EFFICIENTNET MODEL WITH 

LEARNING RATE = 0.01 AND ACTIVATION FUNCTION = TANH 

Optimizer Model Accuracy Precision Recall 

Adam 

B0 93.61 95.92 91.16 

B1 94.01 96.38 91.49 

B3 94.74 97.23 92.13 

B5 95.74 97.29 94.12 

B7 95.42 97.36 93.39 

SGD 

B0 93.24 95.26 91.03 

B1 93.65 95.90 91.21 

B3 94.51 96.85 92.03 

B5 95.51 96.92 94.03 

B7 95.24 97.17 93.21 

RMSProp 
B0 93.33 95.36 91.13 

B1 93.74 96.18 91.14 

Optimizer Model Accuracy Precision Recall 

B3 94.51 97.13 91.77 

B5 95.60 97.10 94.03 

B7 95.24 97.17 93.21 

 

Table 4 shows EfficientNet performance metrics from B0 to 
B7 with a learning rate of 0.01 and a Tanh activation function. 
When the optimizer used is Adam, the Efficiant B5 model 
showed accuracy, precision, and recall levels of 95.74%, 
97.29%, and 94.12%. Similarly, when the optimiser used is 
SGD, EffizientNet B5 showed optimal performance values of 
96.51% (accuracy), 96.92% (precision), and 94.03% (recall). 
The RMSProp Optimizer used in this study reached system 
performance levels (accuracy, precision, and recalls) of 
95,60%, 97,10% and 94,03%. Thus, EfficientNet B5 is the most 
optimal model compared to the other EfficentNet models, when 
learning rate settings = 0.01, and activation functions are Tanh. 
This feature is similar to testing the system model when the 
system function is activated by ReLU with its learning rate 
0.01. 

TABLE V.  PERFORMANCE METRICS OF EFFICIENTNET MODEL WITH 

LEARNING RATE = 0.001 AND ACTIVATION FUNCTION = TANH 

Optimizer Model Accuracy Precision Recall 

Adam 

B0 95.42 95.89 94.94 

B1 96.05 96.52 95.55 

B3 96.42 96.90 95.94 

B5 97.28 97.81 96.75 

B7 97.28 97.73 96.84 

SGD 

B0 95.06 95.61 94.48 

B1 95.78 96.25 95.29 

B3 96.15 96.63 95.67 

B5 97.01 97.53 96.48 

B7 96.96 97.45 96.49 

RMSProp 

B0 95.15 95.62 94.67 

B1 95.78 96.16 95.37 

B3 96.10 96.63 95.59 

B5 97.01 97.54 96.48 

B7 97.10 97.63 96.57 

 

Table 5 shows the performance metrics of EfficientNet B0 
to B7 with a learning rate of 0.001 and a Tanh activation 
function. When the optimizer used is Adam, the Efficient B7 
model shows accuracy, precision, and recall levels reaching 
97.28%, 97.73%, and 96.84%. However, when the optimizer 
used is SGD, the EfficientNet B5 model shows optimal 
performance values of 97.01% (accuracy), 97.53% (precision), 
and 96.48% (recall). When the optimizer used is RMSProp, 
EfficientNet B7 shows optimal performance values of 97.10%, 
97.63%, and 96.57%. From these results, it can be seen that the 
EfficientNet B7 model tends to be dominant when testing the 
system using a learning rate of 0.001 and the Tanh activation 
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function. 

In general, it can be seen that the optimal performance of 
the malaria detection system occurs when testing using 
EfficientNet models B5 and B7. EfficientNet B5 and B7 are 
better at malaria cell image detection compared to smaller 
variants such as B0, B1, and B3 because they have a more 
complex architecture and greater capacity to capture fine and 
important features in the image. Malaria cell images often have 
very fine microscopic details that are difficult to detect, such as 
small differences in cell shape or colour that indicate infection. 
Models such as B5 and B7, with greater input depth, width and 
resolution, are able to extract and process visual information 
more accurately and thoroughly, allowing them to recognise 
patterns and anomalies that smaller models may miss [54]. This 
results in better detection performance, with higher accuracy 
and sensitivity, which is especially important in medical 
applications where detection errors can have serious 
consequences. However, this improvement in accuracy comes 
at a higher computational cost. When further analysed, the 
smaller learning rate in training the EfficientNet model can 
have a significant effect on the model's performance. This can 
be seen from the increase in accuracy, precision and recall 
values when the learning rate is set smaller than before. A small 
learning rate makes the weight update at each iteration 
smoother and more careful, which can help the model achieve 
a more stable convergence and prevent the model from jumping 
past the minimum loss on the loss function landscape [55]. 
However, this also means that the training process will take 
longer, as more iterations are required to achieve convergence. 

Another parameter, the activation function jg has an 
influence on the performance of the model. The ReLU 
activation function tends to be more effective than the Tanh 
function in improving the accuracy, precision and recall values 
of the EfficientNet-based malaria detection system. ReLU 
activation function is better in malaria cell image detection 
compared to Tanh activation function because ReLU 
overcomes some of the problems that often occur in Tanh, 
especially related to vanishing gradient. ReLU only maps 
negative input values to zero and keeps positive values as they 
are, which allows the gradient to remain large and stable during 
training, even in deep neural networks such as those often used 
in medical image detection [56]. This is important in tasks such 
as malaria cell detection, where small and complex details in 
the image must be accurately identified. While Tanh, which 
maps inputs to the range [-1, 1], tends to have a small gradient 
on inputs close to the upper or lower boundary, causing learning 
to be slow or even stalled in the deepest layers [57]. With ReLU, 
the model can learn more quickly and efficiently, enabling 
sharper feature detection and responsiveness to variations in 
malaria cell images, ultimately improving detection accuracy 
and reliability. 

In addition, the use of different optimisers in the 
EfficientNet model made a significant difference to the 
performance of the system. The Adam optimiser provides 
improved accuracy, precision and recall values compared to the 
SGD and RMSProp optimisers in cell image-based malaria 
detection. Adam is better because it is able to provide a balance 
between convergence speed and training stability. Adam uses 

adaptive learning rates and momentum, which allows the model 
to dynamically adjust weight updates based on the mean 
gradient and variance of previous iterations [58]. This is 
particularly useful in tasks such as malaria cell image detection, 
where images have complex variations and the model requires 
efficient learning of subtle features in the data. Compared to 
SGD, which tends to be slow and prone to getting stuck at a 
local minimum, Adam tends to achieve convergence faster and 
more accurately without requiring much hyperparameter 
adjustment [59]. While RMSProp also uses adaptive learning 
rates, Adam is superior because it utilises momentum to 
accelerate training in the right direction and reduce oscillations 
[60]. With Adam, the model can better capture microscopic 
details in malaria cell images, which is important for improving 
diagnosis accuracy and early detection of the disease. 

IV. CONCLUSION 

In this study, researchers implemented the EfficientNet B0 
to B7 models to detect malaria based on red blood cell images. 
The data used came from the National Institutes of Health 
repository and is publicly accessible. In addition, to obtain an 
optimal model, hyperparameter tuning was carried out in the 
form of learning rate, activation function, and optimizer on 
EfficientNet. The learning rates used were 0.01 and 0.001, 
while the activation functions were ReLU and Tanh. The 
EfficientNet optimizers used were Adam, SGD, and RMSProp. 
To measure the performance level of each model, researchers 
used several evaluation parameters such as accuracy, precision, 
and recall. Based on the test results, the EfficientNet-B5 and B7 
models showed the best performance compared to other 
EfficientNet models. The most optimal system test results are 
when the model used is EfficientNet B5 with a learning rate of 
0.001, ReLU activation function, and Adam optimizer. This 
study has proven that the selection of the right model and 
hyperparameter settings can maximize the performance of the 
cell image-based malaria detection system. The use of 
EfficientNet in RBC-based malaria detection has several 
advantages such as accelerating the parasite detection process, 
reducing the involvement of medical personnel who are often 
biased, and minimizing human error in interpretation. Resistant 
malaria parasites can also be detected well because the 
EfficientNet model is able to remember the parasite image 
pattern in RBC well, this can be seen from its performance 
value which reaches 97.69% (for accuracy), 98.36% (for 
precision), and 97.03% (for recall). However, this study has not 
yet discussed and considered the computation time of the 
EfficientNet model in the malaria detection process. Although 
the EfficientNet model with high blocks such as B5 and B7 has 
better performance than the blocks below (B0, B1, and B3), the 
computation time is quite long. So in future research, 
researchers will focus on the computation time in using the 
detection model. So that the accuracy can still be increased but 
the computation time can be more efficient. 
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