

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 388-395

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2290, Copyright ©2024

Submitted : October 4, 2024, Revised : October 19, 2024, Accepted : October 21, 2024, Published : November 21, 2024

388

Enhancing Hybrid Flow Shop Scheduling Problem

with a Hybrid Metaheuristic and Machine Learning

Approach for Dynamic Parameter Tuning

Ahmed Abdulmunem Hussein [1]*

University of Samarra. [1]

Samarra, Iraq.

ahmed.abd@uosamarra.edu.iq [1]

Abstract— This paper addresses the Hybrid Flow Shop

Scheduling Problem (HFSSP) by integrating metaheuristic

(MHs) and machine learning (ML) approaches. Specifically, we

propose a hybrid algorithm by combining Ant Colony

Optimization (ACO) and Iterated Local Search (ILS) to form

ACOILS. To further enhance the performance of this hybrid

approach, we employ Proximal Policy Optimization (PPO),

which is used for dynamic tuning of key parameters within the

hybrid algorithm. The introduction of PPO allows real-time

adjustment of key parameters, such as pheromone evaporation

rates and local search intensity, to balance exploration and

exploitation more effectively. Comparative experiments against

the non-learning version of ACOILS and Simulated Annealing

(SA) show that the learning based LACOILS significantly

reduces the percentage deviation from the lower bound while

maintaining stable performance through dynamic tuning. In

terms of numerical results, LACOILS consistently outperforms

SA and ACOILS. For smaller instances (N=20), it achieves up to

56.52% improvement over ACOILS and 12.5% over SA. For

larger instances (N=150), LACOILS shows up to 29.82%

improvement over ACOILS and 9.09% over SA, demonstrating

its superior solution quality and efficiency.

Keywords— Hybrid Flow Shop Scheduling Problem, Ant

Colony Optimization, Iterated Local Search, Proximal Policy

Optimization, Machine learning.

I. INTRODUCTION

 Combinatorial optimization problems such as the HFSSP
are complex and critically problem in real world
manufacturing and production settings[1]. These problems
involve scheduling jobs of multiple stages under various
constraints by which necessitate sophisticated approach to find
near optimal solutions. MHs including Genetic Algorithm
(GA)[2], Particle Swarm Optimization (PSO)[3], Ant Colony
Optimization (ACO)[4], and Iterated Local Search (ILS)[5]
have been widely used to solve these problems through
exploring large solutions spaces and enhancing those solutions
through local optimization. However, MHs often struggles to
balance between exploration and exploitation specifically in
the dynamic and large scale problems where the search space
evolve and problem constraints grow rapidly[6]. In large scale
HFSSP the traditional methods might fail to adapt to changes
in job priorities or resource availability which is leading to
suboptimal scheduling outcomes.

 The integration of ML with MHs has recently emerged as
promising approach to overcome these limitations through
enhancing the adaptability and performance[7]. By
dynamically adjusting MHs parameters and components based
on real-time feedback the ML can significantly improve the
decision-making process within MH frameworks [8].
Reinforcement learning (RL) methods in particular the PPO
has been effective in enhancing parameter tuning. PPO
iterative learning process allows the algorithm to adjust in
dynamic way to change the conditions and diverse problem
instances by fine tuning parameters continuously[9]. This
capability is crucial for improving algorithms like ACO and
ILS enabling them to adapt better to dynamic scheduling
problems.

 In this paper we propose hybrid algorithm that integrates
Ant Colony Optimization and Iterated Local Search
(ACOILS) and enhances it with PPO based dynamic
parameter tuning. PPO is utilized to adjust critical parameters
with the ACOILS such as pheromone evaporation rates and
local search. The choice of PPO motivated by its advantages
over other RL algorithms like Deep Q-Network (DQN)[10]
and Asynchronous Advantage Actor-Critic (A3C)[11] as PPO
offers greater stability, efficiency, and faster convergence.
DQN and A3C while effective but are typically require long
time to train and run which making PPO a more suitable for
parameter adjustments in complex optimization problems[12].
This adaptive learning approach enables the hybrid algorithm
to fine tune the balance between exploration and exploitation
which improving the consistency and quality of solutions
across various problem instances.

 The integration of PPO with ACOILS provides several
advantages which includes the ability to dynamically adapt
algorithm behavior and address the limitations of static
parameter tuning found in traditional MHs approaches. By
allowing real-time adjustments the hybrid algorithm better
handle the complexity and variability inherent in HFSSP
where problem instances can differ significantly in size and
constraints. The main contribution of this work lies in the
novel hybridization of ACO and ILS and then enhanced by
PPO based parameter tuning in order to offer more efficient
and robust solution for HFSSP.

 The experimental results demonstrate that the proposed

mailto:ahmed.abd@uosamarra.edu.iq

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 388-395

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2290, Copyright ©2024

Submitted : October 4, 2024, Revised : October 19, 2024, Accepted : October 21, 2024, Published : November 21, 2024

389

method able to achieve significant improvements across
almost all instances of the scheduling problem which deliver
robust framework for solving complex HFSSP scenarios. The
adaptive capability of PPO ensures that the algorithm
maintains high performance even in large scale dynamic
environments.

II. LITERATURE REVIEW

The HFSSP is important area of research in production
scheduling due to its complexity and significance in real-
world manufacturing. HFSSP involves scheduling multiple
jobs of various stages within parallel machines each stage
having distinct capabilities which adds layers of complexity
such as machine availability constraints, sequence dependent
setup times and limited capacity. HFSSP in addition must
often handle dynamic environment like random job arrivals,
machine breakdowns, and fluctuating processing times,
making it challenging to find optimal solutions. Researchers
have explored many MHs techniques enhanced by ML to
address these challenges effectively.

A Genetic Programming Hyper-Heuristic (GPHH) has
been proposed for dynamic energy efficient scheduling of
HFSSP where GP employed to generate job sequencing and
machine assignment rules. This approach is effective in
environments characterized by machine breakdowns and
random job arrival. By dynamically generating and optimizing
scheduling rules the method is able of adapting to the
stochastic nature of real-time scheduling environments [13].

In another approach the Shuffled Frog-Leaping Algorithm
(SFLA) integrated with Q-learning (QL) to optimize
distributed assembly hybrid flow shop scheduling. The Q-
learning component dynamically select search strategies
guiding the algorithm global and local search operators. This
cooperation between MHs and RL improve both solution
diversity and convergence leading to better performance in
distributed scheduling environments [14].

A Cooperative Memetic Algorithm (CMA) combined with
RL based agent has been developed for energy efficient
scheduling in distributed HFSSP settings. The RL agent
enhances the algorithm ability to select appropriate local
search operators based on the current problem state which
significantly reduces energy consumption while maintaining
high quality solutions. The method demonstrated significant
improvements in achieving energy aware schedule in large
scale manufacturing systems [15].

Further, Multiobjective Memetic Algorithm incorporating
PSO and QL-based local search have been introduced to
optimize energy efficient scheduling in distributed hybrid flow
shop. The QL mechanism allow the local search to
dynamically adjust its parameters based on real-time feedback
ensuring improved performance on energy consumption and
scheduling efficiency in large scale distributed environment
[16].

The Meta Reinforcement Learning MHs (MRLM)
framework use RL to dynamically select search operators
allowing the MHs to adapt to changes in worker productivity
caused by learning and forgetting effects. This approach

proved effective in improving scheduling performance
especially in labor intensive industries where job processing
times are affected by human factor[17].

Another study introduces a RL based task splitting strategy
for HFSSP where QL is used to dynamically split tasks across
machines in distributed system. The adaptability provided by
RL allowed for significant improvements in makespan and
resource utilization particularly in mass personalized
manufacturing environments[18].

A novel approach that applies QL-based Teaching-
Learning Optimization (TLBO) has been used to address
HFSSP with fuzzy processing times. QL dynamically adjusts
the phases of the TLBO algorithm, enabling it to handle
uncertainties in job processing times more effectively. This
integration of ML into the optimization process significantly
improved the robustness and efficiency of the scheduling
outcomes[19].

Lastly SA has been employed to address HFSSP with
complex constraints such as machine availability and delivery
times. Although this approach does not incorporate ML it
highlights the effectiveness of SA in achieving near-optimal
solutions particularly for large-scale problem instances. The
study demonstrates how dynamic parameter adjustment in SA
contributes to better performance in hybrid flow shop
scheduling[20].

III. PROBLEM DESCRIPTION

The HFSSP presented in this paper involves the scheduling
of 𝑛 jobs through two stages of production. The first stage
consists of a single machine that processes all jobs, and the
second stage includes 𝑚 dedicated parallel machines, where
each machine can process a specific subset of jobs. Each job 𝐽𝑖
 (where 𝑖 = 1,2, … , 𝑛) must be processed first on the common
machine in Stage 1 and then assigned to one of the dedicated
machines in Stage 2 based on the job's type. The primary
objective is to minimize the makespan 𝐶𝑚𝑎𝑥, defined as the
total time required to complete all jobs[1]. HFSSP has the
following assumptions:

• All jobs must be processed on the single machine in
Stage 1 before being processed on any of the
dedicated machines in Stage 2.

• Each job 𝐽𝑖 has a specific release date 𝑟𝑖 , which is the
time when the job becomes available for processing.

• Each job 𝐽𝑖 has a specific delivery time 𝑑𝑖 , which is
the latest time by which the job must be completed.

• All machines in both stages are non-preemptive,
meaning that once a job starts processing on a
machine, it cannot be interrupted until completion.

Notation
𝑛: Number of jobs to be scheduled.
𝐽𝑖 : The set of jobs 𝑖 = 1,2, … , 𝑛.
𝑀𝑖 : The single common machine in the first stage.

𝑀𝑗: Dedicated machines 𝑗 = 1,2, … , 𝑚 in the second stage.

𝑝𝑖1: Processing time of job 𝑖 on the common machine.
𝑝𝑖𝑗: Processing time of job 𝑖 on dedicated machine 𝑀𝑗.

𝑟𝑖 : Release date of job 𝑖 (time when the job becomes
available).
𝑑𝑖: Delivery time of job 𝑖 (deadline by which the job must be

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 388-395

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2290, Copyright ©2024

Submitted : October 4, 2024, Revised : October 19, 2024, Accepted : October 21, 2024, Published : November 21, 2024

390

completed).
𝐶𝑖1: The completion time of job 𝐽𝑖 on the common machine.
𝐶𝑖2: The completion time of job 𝐽𝑖 on the dedicated machine.
𝑆𝑖1: The start time of job 𝐽𝑖 on the common machine.
𝑆𝑖2: The start time of job 𝐽𝑖 on the dedicated machine.
𝐶𝑚𝑎𝑥: The makespan, or the total time to complete all jobs.

min 𝐶𝑚𝑎𝑥 = max
𝑖

{𝐶𝑖2} (1)

𝐶𝑖1 ≤ 𝑆𝑖2 , ∀𝑖 (2)

𝑆𝑖1 ≥ 𝑟𝑖 , ∀𝑖 (3)

𝐶𝑖2 ≤ 𝑑𝑖, ∀𝑖 (4)

𝐶𝑖1 = 𝑆𝑖1 + 𝑝𝑖1, 𝐶𝑖2 = 𝑆𝑖2 + 𝑝𝑖𝑗 , ∀𝑖, 𝑗 (5)

𝑆𝑖1 ≥ 𝐶𝑘1 , 𝑆𝑖2 ≥ 𝐶𝑘2 , ∀𝑖 ≠ 𝑘 (6)

The objective of the problem is to minimize the makespan
as defined in (1). The first constraint (2) ensures that the first
job processed on the common machine in Stage 1 before
moving to its assigned dedicated machine in Stage 2. The
second constraint (3) impose that no job can start processing
before its release date to ensure that the job become available
only after its designated release time. The third constraint (4)
ensure that each job must be completed before or by its
specific delivery time so respecting deadlines for job
completion. The non-preemption constraint (5) dictate that
once the job start processing on any machine it is must run
uninterrupted until completion. This constraint guarantees that
no job can be paused or preempted during processing. The last
constraint is the machine availability constraint (6) that ensure
that each machine can process only one job at a time
preventing any overlap in job assignments on the same
machine. This ensures that the scheduling adhere to the
availability and capacity of the machines with each job
waiting until the previous one is completed. These constraints
collectively define the problem and guide the scheduling
decisions to minimize the makespan[1].

IV. METHODOLOGY

The methodology is applied to solve the HFSSP by
integrating ACO for generating initial schedules and ILS for
refining these schedules to enhance ACO’s exploitation
capabilities and escaping local optima. PPO dynamically
adjusts ACOILS parameters based on real-time performance
improving the balance between exploration and exploitation to
achieve more efficient scheduling solutions as shown in Fig. 1.

A. Ant Colony Optimization

ACO is a population based MHs inspired by the foraging
behavior of ants. Ants leave pheromone trails on paths they
traverse, and subsequent ants are more likely to follow these
paths based on pheromone strength, creating a positive
feedback loop. In ACO, artificial ants build solutions to
optimization problems by probabilistically choosing
components (such as in job assignments in scheduling
problems) based on the intensity of the pheromone and the
heuristic information. Over time, pheromone evaporation
ensures that suboptimal solutions are less attractive. ACO is
particularly well-suited for combinatorial optimization
problems like the job shop scheduling and flow shop
scheduling[4].

B. Iterated Local Search

ILS is single-based MHs that focuses on the exploitation of
local optima. Starting from an initial solution, ILS repeatedly
applies a local search method to explore the neighborhood of
the current solution. When a local optimum is found the
algorithm perturbs the current solution to escape the local
minimum and re-applies local search from the new starting
point. The process of local search and perturbation continues
iteratively enabling the algorithm to explore a larger search
space and escape poor-quality local minima. ILS is often used
for fine-tuning solutions in difficult optimization problems[5].

C. Hybrid ACO and ILS

In this hybrid approach ACO is responsible for exploration
(diversity) by constructing solutions based on pheromone
trails, while ILS is used to exploit the best solutions found by
ACO to refine them further using local search. The ILS helps
ACO in enhancing the solution quality by

Fig. 1 The flow process of the LACOILS

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 388-395

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2290, Copyright ©2024

Submitted : October 4, 2024, Revised : October 19, 2024, Accepted : October 21, 2024, Published : November 21, 2024

391

focusing on exploitation (intensification) to reach near-
optimal solutions. The steps of algorithm1 hybrid ACOILS
algorithm are as follow:

1) Initialization:

a) Set the ACO parameters such as the pheromone

matrix, number of ants, evaporation rate, and heuristic factors.

b) Set ILS parameters including perturbation strength

and the local search method.

c) Initialize the pheromone trails for the solution space.

2) Ant Colony Exploration:

a) For each iteration every ant constructs a solution

based on pheromone strength and heuristic values.

b) Ants probabilistically choose components to build

their solutions using a balance of exploration (pheromone) and

exploitation (heuristic values).

3) Local Search (ILS):

a) After each ant constructs a solution, apply the ILS

method to refine it.

b) Perform local search to explore the neighborhood of

the solution and reach a local optimum.

c) Perturb the local optimum if necessary to escape

suboptimal local minima and perform further searches.

4) Pheromone Update:

a) If the solution found by ILS improves upon the best

Algorithm 1: Hybrid ACOILS

Initialize ACO parameters:

 Pheromone matrix (𝜏): Initial pheromone levels for the solution space

 Number of ants (𝑚): Size of the ant colony

 Evaporation rate (𝜌): Controls how quickly pheromones decay

 Alpha (𝛼): Weight of the pheromone influence in decision-making

 Beta (𝛽): Weight of heuristic information influence in decision-making

 Heuristic factors (𝜂): Problem-specific information such as job processing

times or machine availability

Initialize ILS parameters:

 Perturbation strength: Determines how much a solution is modified to

escape local optima

 Local search method: Defines the technique used to refine solutions

 Number of iterations: Maximum iterations for local search

 Acceptance criterion: Condition to accept or reject new solutions

Generate initial pheromone matrix (initialize pheromone trails with 𝜏₀)

for each ACO iteration do

 for each ant in the ant colony do

 Construct a solution using ACO:

 Select solution components based on pheromone trails (𝜏) and

heuristic values (𝜂)

 Probabilistically balance exploration and exploitation based on

𝛼 𝑎𝑛𝑑 𝛽

 Apply local search to the constructed solution using ILS:

 Explore the neighborhood of the current solution using local search

method

 Perturb the solution if necessary to escape local minima

 if the refined solution improves the current best solution then

 Update the best solution found

 Deposit pheromone on the paths/components of the improved solution:

 Strength of deposition depends on the quality of the solution

 end for

 Evaporate pheromone globally (𝜏 = (1 − 𝜌) ∗ 𝜏) to prevent stagnation

and encourage exploration

end for

Output the best solution found by the hybrid ACO-ILS algorithm

known solution (BKS), deposit pheromone on the solution

components.

b) Update the pheromone matrix based on the quality

of the solution found.

c) Evaporate pheromone to avoid premature

convergence and enable exploration of new areas in the

solution space.

5) Termination:

a) Repeat the process until a stopping criterion is met

(maximum number of iterations).

b) Output the best solution found.

D. Proximal Policy Optimization

PPO is a policy gradient based RL algorithm designed to
improve training stability and performance. It optimizes the
policy by directly updating it based on gradients using a
combination of trust region methods and stochastic gradient
descent. PPO simplifies the complexity of Trust Region Policy
Optimization (TRPO) while maintaining strong
performance[21].

PPO achieves this by using a clipped objective function
that prevents the policy from making large updates, ensuring
the agent’s actions do not change too drastically in a single
update. This "proximal" step ensures that the policy update
stays within a reasonable range of the current policy,
improving stability while encouraging efficient exploration.
The key components of PPO are Policy Network which maps
the state to an action. The second component is value network
(Critic) at which evaluates the expected return (advantage
function) of the current state. Thirdly, clipped objective
function where PPO uses a clipped surrogate objective to limit
how much the policy can change between updates, which
avoids large steps that could destabilize learning. The goal is
to dynamically tune parameters of the hybrid ACOILS
algorithm using PPO, which adjusts parameters like
pheromone evaporation rate, exploration-exploitation balance,
and perturbation strength in ILS. The PPO agent learns a
policy to adjust these parameters based on the performance of
the hybrid algorithm. The steps of algorithm2 PPO are as
follow:

1) Initialization:

a) Initialize PPO parameters, such as the policy

network, value network, learning rate, clipping threshold, and

batch size.

b) Define the action space for parameter tuning (the

parameter of ACOILS).

c) Set the initial policy and value networks (actor and

critic).

2) State Representation:

a) Define the state as the current performance of the

ACOILS algorithm, which could include metrics like the

quality of the solution, iteration progress, and algorithm

behavior (e.g., how many ants converge to the same solution).

b) Collect performance feedback from the hybrid

ACOILS algorithm to form the state.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 388-395

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2290, Copyright ©2024

Submitted : October 4, 2024, Revised : October 19, 2024, Accepted : October 21, 2024, Published : November 21, 2024

392

3) Action Representation:

a) Define the actions as adjustments to the ACOILS

parameters. For example, actions might include:

b) Adjusting the pheromone evaporation rate.

c) Changing the number of iterations for local search.

d) Modifying the balance between exploration and

exploitation.

4) Reward Calculation:

a) The reward is based on the improvement in solution

quality after tuning the parameters. For example, if the

solution found by ACO-ILS improves significantly due to the

tuned parameters, a higher reward is given. You can also

consider speed or stability improvements.

5) PPO Policy Update:

a) For each update step, run ACO-ILS with the current

parameters selected by the PPO policy.

b) Compute the reward based on solution

improvement.

c) Use the value network to compute the advantage

function, which estimates how much better the action was

compared to the baseline.

Algorithm 2: Proximal Policy Optimization

Input:

Initialize policy network (πθ) with random weights

Initialize value network (Vθ) with random weights

Set learning rates for actor and critic

Set clipping threshold for PPO updates

Set batch size and number of epochs

Initialize ACO and ILS parameters (pheromone evaporation rate, local search

parameters, etc.)

Define action space (possible parameter ranges)

while not converged do

 for each episode (ACO-ILS run) do

 Initialize state S (e.g., solution quality, algorithm performance metrics)

 A = πθ(S) // Select action (tune ACOILS parameters) based on current

policy πθ

 Execute action A (adjust pheromone rate, local search settings, etc.)

 Run ACO-ILS for one full iteration using new parameters

 NewState = Current state of ACO-ILS after running iteration

 Reward = Improvement in solution quality, speed, or stability

 Store (S, A, Reward, NewState) in memory

 // Update current state

 S = NewState

 end for

 Compute advantage A(S, A) using the value network

 for each batch of experience do

 Calculate the ratio of probabilities between old and new policies r(θ)

 Use the clipped objective function to compute the surrogate loss:

 L(θ) = min(r(θ) * A(S, A), clip(r(θ), 1 - ε, 1 + ε) * A(S, A))

 Perform gradient descent on L(θ) to update the policy network (actor)

 Update the value network by minimizing the value loss:

 L(V) = (V(S) - target_value)^2

 end for

end while

Output: Best tuned parameters for ACO-ILS

d) Update the policy network using the clipped

objective function to ensure that parameter changes remain

within a stable range.

6) Repeat Until Convergence:

a) Continue iterating through ACO-ILS runs, using the

PPO agent to adjust the parameters dynamically.

b) Stop when a predefined stopping criterion is reached

(e.g., maximum iterations or convergence of solution quality).

E. Experimental Setup

The experiments were conducted using a laptop equipped
with an AMD Ryzen 7 5800H processor, and 16GB of RAM.
This hardware configuration ensures sufficient computational
power to handle the large-scale optimization problems tackled
in this study including the HFSSP. To evaluate the
performance of the proposed algorithm the problem instances
were generated following the structure described in Hajji et
al.’s work[20]. Various instance classes with differing job
sizes (N=20,50,100,150) and multiple machine configurations
are considered. Processing times, release dates, and delivery
times are randomly generated from predefined ranges for each
instance to ensure diverse and challenging set of test cases.
The experiments included multiple iterations per instance to
capture the variability and consistency of the solution quality
with comparisons made against known lower bounds and
computational benchmarks.

V. RESULTS AND DISCUSSION

The computational results of this study presented in this
section. ACOILS and LACOILS applied to the HFSSP. While
ACOILS used the Taguchi method for offline parameter
tuning[22], LACOILS employed PPO to dynamically tune its
parameters in real time. In table I PPO was used to

Table I. Parameters values for LACOILS and ACOILS

Parameter LACOILS ACOILS Role of the parameter

Pheromone

matrix (𝜏)

0.1 0.3 Represents the pheromone trail

strength, which influences the

probability of choosing certain

solution components.

Number of

ants (𝑚)

Number of jobs The number of ants constructing

solutions in each iteration.

Evaporatio

n rate (𝜌)

0.2 0.1 Controls how much pheromone

is retained on each path after

every iteration.

Alpha (𝛼) 1 2 A parameter that weights the

influence of pheromone trails on

decision-making.

Beta (𝛽) 2 2 A parameter that weights the

influence of heuristic

information (e.g., job durations,

machine availability).

Heuristic

factors (𝜂)

𝜂
= 1 𝑗𝑜𝑏 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒⁄

Provide additional guidance

during solution construction,

such as job priority or shortest

processing time.

Perturbatio

n strength

14% 20% Determines the magnitude of

changes made to the current

solution to escape local optima.

Number of

iterations

372 484 The number of local search

steps applied to improve

solutions.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 388-395

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2290, Copyright ©2024

Submitted : October 4, 2024, Revised : October 19, 2024, Accepted : October 21, 2024, Published : November 21, 2024

393

Table II. Comparison results of the proposed algorithms.

In
sta

n
c
e

A
lg

o
r
ith

m
s

N
 =

 2
0

N
 =

 5
0

N
 =

 1
0
0

N
 =

 1
5
0

D
e
v
.

%

L
B

D
e
v
.

%

L
B

D
e
v
.

%

L
B

D
e
v
.

%

L
B

Cl1 SA 0.11 17 0.20 11 0.15 8 0.28 2

ACOILS 0.23 12 0.24 9 0.19 7 0.33 0

LACOILS 0.1 20 0.17 15 0.11 10 0.23 3

Cl2 SA 0.21 17 0.25 9 0.18 2 0.40 1

ACOILS 0.27 14 0.29 5 0.26 1 0.47 0

LACOILS 0.19 21 0.2 12 0.16 3 0.36 2

Cl3 SA 1.75 1 0.92 1 0.70 1 0.75 0

ACOILS 1.86 0 1.12 0 0.74 1 0.93 0

LACOILS 1.71 3 0.86 2 0.64 2 0.68 1

Cl4 SA 0.18 17 0.26 8 0.34 1 0.34 1

ACOILS 0.27 10 0.35 2 0.56 0 0.42 0

LACOILS 0.24 14 0.28 6 0.41 1 0.37 1

Cl5 SA 0.48 13 0.58 4 0.46 0 0.44 0

ACOILS 0.51 8 0.68 1 0.55 0 0.57 0

LACOILS 0.42 16 0.55 6 0.47 0 0.4 1

continuously adjust the parameters which allow LACOILS
to adapt efficiently to various scenarios. This dynamic tuning
method helped LACOILS balance exploration and
exploitation more effectively, leading to optimized solutions
and improved algorithm efficiency.

Table II compares the performance of three algorithms:
SA[20], ACOILS, and LACOILS. The performance is
evaluated in terms of percentage deviation (Dev.) from the
lower bound (LB) across various problem sizes and instance
classes.

• For smaller instances (N=20), LACOILS outperforms
both SA and ACOILS, showing the lowest percentage
deviations. For example, for Class Cl1, LACOILS
achieves a deviation of only 0.1%, whereas SA and
ACOILS exhibit higher deviations 0.11% and 0.23%
respectively. This indicates that incorporating learning
for dynamic parameter adjustment in LACOILS
improves solution quality for smaller instances.

• As the problem size increases (N=150), LACOILS
continues to show competitive performance but the
deviations rise for all algorithms. For Class Cl5,
LACOILS records a deviation of 0.4%, still
outperforming ACOILS 0.57% and SA achieves the
closer deviation for LACOILS of 0.44%. This
highlights that LACOILS manages to balance
exploration and exploitation better than ACOILS and
SA, but LACOILS remains slightly more effective for
large problem sizes.

LACOILS demonstrates clear improvements over
ACOILS in smaller, medium, and large sized problems due to
the PPO component that tunes algorithm parameters in real-
time. In Table III, LACOILS demonstrates superior
computational efficiency across all problem instances
compared to both ACOILS and SA, with the success largely
attributed to its use of PPO for dynamic parameter tuning. For

Table III. The Computation time of the proposed algorithm

Instance Algorithm N = 20 N = 50 N = 100 N = 150

Cl1 SA <1 s 6 s 32 s 7 s

ACOILS 1.61 s 7.99 s 31.47 s 7.5 s

LACOILS 0.86 s 5.82 s 28.74 s 5.55 s

Cl2 SA 2 s 2 s 2 s 7 s

ACOILS 1.83 s 1.94 s 2.92 s 8.35 s

LACOILS 1.74 s 1.65 s 1.95 s 6.42 s

Cl3 SA 3 s 2 min 4 min 14 min

ACOILS 3.39 s 2.58 min 5.07 min 15.46 min

LACOILS 2.89 s 1.43 min 3.69 min 13.38 min

Cl4 SA <1 s 5 s 39 s 1 min

ACOILS 0.78 s 5.43 s 42.97 s 1.25 min

LACOILS 0.68 s 4.37 s 37.97 s 52.7 s

Cl5 SA 2 s 20 s 2 min 13 min

ACOILS 2.68 s 18.37 s 2.54 min 15.11 min

LACOILS 1.91 s 14.57 s 1.88 min 11.26 min

smaller problem sizes, such as in Cl1 and Cl2, LACOILS
consistently achieves the fastest computation times,
completing Cl1 (N = 20) in 0.86 seconds, significantly
outperforming ACOILS and SA. As the problem size
increases, particularly in more complex instances like Cl3 and
Cl5, LACOILS continues to maintain a computational
advantage. For example, in Cl5 (N = 150), LACOILS finishes
in 11.26 minutes, compared to 15.11 minutes for ACOILS and
13 minutes for SA. The ability of LACOILS to adaptively tune
critical parameters such as pheromone evaporation and local
search intensity in real time, through PPO, enables it to
balance exploration and exploitation more effectively, thus
reducing unnecessary computation. In contrast, ACOILS,
without adaptive tuning, exhibits longer computation times
due to its static parameter settings. While SA performs
competitively in smaller instances, it struggles with larger
problem sizes, highlighting the scalability and efficiency
advantages of LACOILS driven by its integration of PPO for
parameter optimization.

In Table IV, the performance of heuristic and MHs
algorithms for Class Cl1 is compared across problem sizes.
Among the heuristics, Hjoh1 shows the poorest performance,
with high deviation percentages and rare occurrences of
hitting the lower bound, while Hjoh2 performs significantly
better, with deviation percentages as low as 1% and frequent
occurrences at the lower bound. HNEH also performs well but
falls behind Hjoh2. In contrast, the MHs algorithms
consistently outperform the heuristics. SA demonstrates strong
performance with low deviation percentages and frequent
lower bound hits, particularly for larger problem sizes.
ACOILS performs similarly to SA but with slightly higher
deviations. LACOILS achieves the best results overall, with

Table IV. Comparative results of the proposed algorithm against BKS.

Algorith

m

N = 20 N = 50 N = 100 N = 150

Dev.

%

L

B

Dev.

%

L

B

Dev.

%

L

B

Dev.

%

L

B

Hjoh1 8.1 1 3.99 0 2.07 0 1.40 0

Hjoh2 1.00 6 0.21 7 0.18 2 0.30 0

HNEH 3.10 4 1.5 3 0.70 2 0.72 1

SA 0.11 17 0.20 11 0.15 8 0.28 2

ACOILS 0.23 12 0.24 9 0.19 7 0.33 0

LACOILS 0.1 20 0.17 15 0.11 10 0.23 3

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 388-395

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2290, Copyright ©2024

Submitted : October 4, 2024, Revised : October 19, 2024, Accepted : October 21, 2024, Published : November 21, 2024

394

the lowest deviations and most frequent lower bound hits
across all problem sizes, demonstrating the effectiveness of
dynamic parameter tuning in improving both solution quality
and consistency.

A. Performance Analysis

Table V presents the Standard Deviation (SD), Mean, and
Coefficient of Variation (CV)[23], which is calculated as
follow:

𝐶𝑉 =
𝑆𝐷

𝑚𝑒𝑎𝑛
 × 100 (7)

for each algorithm. These metrics help assess the quality of
solutions along with the consistency and stability of each
method.

• LACOILS approach shows lower SD values in
compared to ACOILS across multiple instances
indicating that the learning based approach lead to
more consistent performance. The lower SD indicate
that LACOILS has less variability in its results which
is crucial in real-world scheduling applications where
stability is as important as solution quality.

• The CV for LACOILS approach also lower than
ACOILS confirms that LACOILS provide more stable
and reliable results relative to the mean solution. This
support the argument that learning based parameter
tuning in LACOILS reduce the randomness in search
behavior which leads to more controlled and
predictable outcome.

ACOILS shows higher SD and CV values reflects
variability in performance. While ACOILS sometimes finds
good solutions but its results are more inconsistent without
dynamic learning based parameter adjustments.

The Wilcoxon signed-rank test shown in table VI was
conducted to statistically compare LACOILS and
ACOILS[24]. This test assesses whether the performance
differences between the two algorithms are statistically
significant. The test reveals a significant improvement in the
performance of LACOILS over ACOILS across different
instances. The p-values reported in table VI are below the
significance threshold (p<0.05) indicating that the enhanced
learning mechanism in LACOILS leads to statistically
significant better results compared to ACOILS. This statistical
validation strengthens the argument that incorporating RL for
parameter tuning in LACOILS meaningfully improves the
algorithm's performance, leading to both more optimal and
more consistent results compared to the non-learning version
(ACOILS).

Table V. Descriptive metrics of LACOILS performance

Instance LACOILS ACOILS

SD Mean CV SD Mean CV

Cl1 28.7 1278 2.24% 37.5 1307 2.86%

Cl2 32.64 1397 2.33% 39.72 1427 2.78%

Cl3 40.83 1426 2.86% 48.7 1473 3.30%

Cl4 61.5 1518 4.05% 66.53 1584 4.20%

Cl5 64.37 1678 3.83% 74.62 1719 4.34%

Table VI. Wilcoxon ranked test LACOILS against ACOILS

Instance Wilcoxon test

Cl1 0.039547

Cl2 0.023861

Cl3 0.037355

Cl4 0.041869

Cl5 0.034826

Box plots in Fig. 2 visually compare the distributions of
performance between LACOILS and ACOILS. Box plots
consist of several key parts: the box, which represents the
interquartile range (IQR) containing the middle 50% of the
data points; the whiskers, which extend from the box to the
minimum and maximum values, excluding outliers; the
median line, located within the box, indicating the median of
the data; and outliers, which are points outside the whiskers,
representing extreme values[25]. Fig. 2.a LACOILS shows a
narrower IQR and fewer outliers compared to Fig. 2.b
ACOILS. This indicates that LACOILS not only achieves
better median performance but also exhibits less variability in
its results. The smaller spread of the whiskers and box
demonstrates that LACOILS delivers more consistent
outcomes. Fig. 2.b ACOILS shows wider IQR and more
frequent outliers indicates the higher variability and less stable
performance. This aligns with the findings from the CV and
SD metrics where ACOILS show a more fluctuation in its
results due to the lack of adaptive parameter tuning. The box
plot analysis further support the conclusion that LACOILS
provides more consistent and reliable performance in
compared to ACOILS with fewer extreme outlier results and
narrower range of deviations. This consistency is crucial in
scheduling problems where predictability and repeatability are
key for practical applications.

B. Discussion

The utilization of PPO plays critical role in dynamically
tuning the parameters in LACOILS significantly improving its
performance in compared to ACOILS and SA. PPO enable
LACOILS to adjust parameters like pheromone evaporation
and local search in online real time which optimizing the

Fig. 2 The box plot distribution of the five groups of instances a) LACOILS b)

ACOILS

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 388-395

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2290, Copyright ©2024

Submitted : October 4, 2024, Revised : October 19, 2024, Accepted : October 21, 2024, Published : November 21, 2024

395

balance between exploration and exploitation. This
dynamic tuning is essential for achieving lower percentage
deviations and more consistent results which evidenced by the
lower SD and CV values in compared to ACOILS. The
Wilcoxon test further demonstrate the advantage of learning
based tuning with LACOILS consistently outperforming
ACOILS while the box plots emphasize PPO impact by
showing a narrower range of performance for LACOILS
which indicating more stable and predictable results. The main
advantages of LACOILS include its adaptability to different
problem instances leading to improved solution quality and
consistency particularly in small to medium sized problems
and strong statistical validation through various performance
metrics. However, LACOILS may be sensitive to the choice of
PPO related parameters such as learning rates and exploration
and exploitation trade-offs requiring extensive
experimentation to fine tune these parameters effectively. This
parameter sensitivity introduces additional layer of complexity
complicating its application in real world and requiring further
refinement in order to ensure robustness across different
problem settings.

VI. CONCLUSION

This study presents a hybrid algorithm LACOILS that
integrates ACO and ILS with PPO for dynamic parameter
tuning to solve the HFSSP which achieving significant
improvements over traditional methods like ACOILS and SA.
The adaptive learning approach enabled LACOILS to better
balance exploration and exploitation which leading to
enhanced solution quality and computational efficiency across
various problem sizes especially in smaller to medium
instances. Compared to other studies which often rely on static
parameter tuning the LACOILS real-time adjustments
provides more effective way to handle the complexity and
variability of HFSSP. The main novelty lies in the dynamic
tuning capability enabled by PPO by which transform
traditional MHs by making them more responsive to changing
problem conditions. However, the approach sensitivity to PPO
parameter selection and potential computational limitations for
larger instances suggest the need for further optimization.
Future work could explore alternative RL methods for
parameter tuning and extend the approach to other complex
scheduling scenarios.

REFERENCES

[1] R. Ruiz and J. A. Vázquez-Rodríguez, “The hybrid flow shop scheduling

problem,” Eur J Oper Res, vol. 205, no. 1, pp. 1–18, 2010.

[2] J. H. Holland, “Genetic algorithms,” Sci Am, vol. 267, no. 1, pp. 66–73,

1992.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in

Proceedings of ICNN’95-international conference on neural networks,

IEEE, 1995, pp. 1942–1948.

[4] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE

Comput Intell Mag, vol. 1, no. 4, pp. 28–39, 2006.

[5] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,” in

Handbook of metaheuristics, Springer, 2003, pp. 320–353.

[6] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley

& Sons, 2009.

[7] E.-G. Talbi, “Machine learning into metaheuristics: A survey and

taxonomy,” ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–32,

2021.

[8] A. A. Hussein, E. T. Yassen, and A. N. Rashid, “Grey Wolf Optimizer

for Green Vehicle Routing Problem.,” International Journal of

Intelligent Engineering & Systems, vol. 16, no. 5, 2023.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” arXiv preprint

arXiv:1707.06347, 2017.

[10] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis of deep Q-

learning,” in Learning for dynamics and control, PMLR, 2020, pp. 486–

489.

[11] M. Sewak and M. Sewak, “Actor-critic models and the A3C: The

asynchronous advantage actor-critic model,” Deep reinforcement

learning: frontiers of artificial intelligence, pp. 141–152, 2019.

[12] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,

“Deep reinforcement learning that matters,” in Proceedings of the AAAI

conference on artificial intelligence, 2018.

[13] J. Duan, F. Liu, Q. Zhang, J. Qin, and Y. Zhou, “Genetic programming

hyper-heuristic-based solution for dynamic energy-efficient scheduling

of hybrid flow shop scheduling with machine breakdowns and random

job arrivals,” Expert Syst Appl, p. 124375, 2024.

[14] J. Cai, D. Lei, J. Wang, and L. Wang, “A novel shuffled frog-leaping

algorithm with reinforcement learning for distributed assembly hybrid

flow shop scheduling,” Int J Prod Res, vol. 61, no. 4, pp. 1233–1251,

2023.

[15] J.-J. Wang and L. Wang, “A cooperative memetic algorithm with

learning-based agent for energy-aware distributed hybrid flow-shop

scheduling,” IEEE Transactions on Evolutionary Computation, vol. 26,

no. 3, pp. 461–475, 2021.

[16] W. Zhang, C. Li, M. Gen, W. Yang, and G. Zhang, “A multiobjective

memetic algorithm with particle swarm optimization and Q-learning-

based local search for energy-efficient distributed heterogeneous hybrid

flow-shop scheduling problem,” Expert Syst Appl, vol. 237, p. 121570,

2024.

[17] Z. Zhang, Z. Shao, W. Shao, J. Chen, and D. Pi, “MRLM: A meta-

reinforcement learning-based metaheuristic for hybrid flow-shop

scheduling problem with learning and forgetting effects,” Swarm Evol

Comput, vol. 85, p. 101479, 2024.

[18] X. Chen et al., “Reinforcement learning for distributed hybrid flowshop

scheduling problem with variable task splitting towards mass

personalized manufacturing,” J Manuf Syst, vol. 76, pp. 188–206, 2024.

[19] B. Xi and D. Lei, “Q-learning-based teaching-learning optimization for

distributed two-stage hybrid flow shop scheduling with fuzzy processing

time,” Complex System Modeling and Simulation, vol. 2, no. 2, pp. 113–

129, 2022.

[20] M. K. Hajji, O. Hamlaoui, and H. Hadda, “A simulated annealing

metaheuristic approach to hybrid flow shop scheduling problem,”

Advances in Industrial and Manufacturing Engineering, p. 100144, 2024.

[21] H. Zhong and T. Zhang, “A theoretical analysis of optimistic proximal

policy optimization in linear markov decision processes,” Adv Neural Inf

Process Syst, vol. 36, 2024.

[22] J. A. Ghani, I. A. Choudhury, and H. H. Hassan, “Application of Taguchi

method in the optimization of end milling parameters,” J Mater Process

Technol, vol. 145, no. 1, pp. 84–92, 2004, doi:

https://doi.org/10.1016/S0924-0136(03)00865-3.

[23] Z. Jalilibal, A. Amiri, P. Castagliola, and M. B. C. Khoo, “Monitoring

the coefficient of variation: A literature review,” Comput Ind Eng, vol.

161, p. 107600, 2021.

[24] M. R. Simi, B. K. Bindhu, A. Varghese, and M. R. Rani, “Optimization

of DRASTICA vulnerability assessment model by Wilcoxon rank sum

non parametrical statistical test,” Mater Today Proc, vol. 58, pp. 121–

127, 2022.

[25] V. Vignesh, D. Pavithra, K. Dinakaran, and C. Thirumalai, “Data

analysis using box and whisker plot for stationary shop analysis,” in 2017

International Conference on Trends in Electronics and Informatics

(ICEI), IEEE, 2017, pp. 1072–1076.

