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Abstract— This paper addresses the Hybrid Flow Shop 

Scheduling Problem (HFSSP) by integrating metaheuristic 

(MHs) and machine learning (ML) approaches. Specifically, we 

propose a hybrid algorithm by combining Ant Colony 

Optimization (ACO) and Iterated Local Search (ILS) to form 

ACOILS. To further enhance the performance of this hybrid 

approach, we employ Proximal Policy Optimization (PPO), 

which is used for dynamic tuning of key parameters within the 

hybrid algorithm. The introduction of PPO allows real-time 

adjustment of key parameters, such as pheromone evaporation 

rates and local search intensity, to balance exploration and 

exploitation more effectively. Comparative experiments against 

the non-learning version of ACOILS and Simulated Annealing 

(SA) show that the learning based LACOILS significantly 

reduces the percentage deviation from the lower bound while 

maintaining stable performance through dynamic tuning. In 

terms of numerical results, LACOILS consistently outperforms 

SA and ACOILS. For smaller instances (N=20), it achieves up to 

56.52% improvement over ACOILS and 12.5% over SA. For 

larger instances (N=150), LACOILS shows up to 29.82% 

improvement over ACOILS and 9.09% over SA, demonstrating 

its superior solution quality and efficiency. 

Keywords— Hybrid Flow Shop Scheduling Problem, Ant 

Colony Optimization, Iterated Local Search, Proximal Policy 

Optimization, Machine learning. 

I. INTRODUCTION 

 Combinatorial optimization problems such as the HFSSP 
are complex and critically problem in real world 
manufacturing and production settings[1]. These problems 
involve scheduling jobs of multiple stages under various 
constraints by which necessitate sophisticated approach to find 
near optimal solutions. MHs including Genetic Algorithm 
(GA)[2], Particle Swarm Optimization (PSO)[3], Ant Colony 
Optimization (ACO)[4], and Iterated Local Search (ILS)[5] 
have been widely used to solve these problems through 
exploring large solutions spaces and enhancing those solutions 
through local optimization. However, MHs often struggles to 
balance between exploration and exploitation specifically in 
the dynamic and large scale problems where the search space 
evolve and problem constraints grow rapidly[6]. In large scale 
HFSSP the traditional methods might fail to adapt to changes 
in job priorities or resource availability which is leading to 
suboptimal scheduling outcomes. 

 The integration of ML with MHs has recently emerged as 
promising approach to overcome these limitations through 
enhancing the adaptability and performance[7]. By 
dynamically adjusting MHs parameters and components based 
on real-time feedback the ML can significantly improve the 
decision-making process within MH frameworks [8]. 
Reinforcement learning (RL) methods in particular the PPO 
has been effective in enhancing parameter tuning. PPO 
iterative learning process allows the algorithm to adjust in 
dynamic way to change the conditions and diverse problem 
instances by fine tuning parameters continuously[9]. This 
capability is crucial for improving algorithms like ACO and 
ILS enabling them to adapt better to dynamic scheduling 
problems. 

 In this paper we propose hybrid algorithm that integrates 
Ant Colony Optimization and Iterated Local Search 
(ACOILS) and enhances it with PPO based dynamic 
parameter tuning. PPO is utilized to adjust critical parameters 
with the ACOILS such as pheromone evaporation rates and 
local search. The choice of PPO motivated by its advantages 
over other RL algorithms like Deep Q-Network (DQN)[10] 
and Asynchronous Advantage Actor-Critic (A3C)[11] as PPO 
offers greater stability, efficiency, and faster convergence. 
DQN and A3C while effective but are typically require long 
time to train and run which making PPO a more suitable for 
parameter adjustments in complex optimization problems[12]. 
This adaptive learning approach enables the hybrid algorithm 
to fine tune the balance between exploration and exploitation 
which improving the consistency and quality of solutions 
across various problem instances. 

 The integration of PPO with ACOILS provides several 
advantages which includes the ability to dynamically adapt 
algorithm behavior and address the limitations of static 
parameter tuning found in traditional MHs approaches. By 
allowing real-time adjustments the hybrid algorithm better 
handle the complexity and variability inherent in HFSSP 
where problem instances can differ significantly in size and 
constraints. The main contribution of this work lies in the 
novel hybridization of ACO and ILS and then enhanced by 
PPO based parameter tuning in order to offer more efficient 
and robust solution for HFSSP. 

 The experimental results demonstrate that the proposed 
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method able to achieve significant improvements across 
almost all instances of the scheduling problem which deliver 
robust framework for solving complex HFSSP scenarios. The 
adaptive capability of PPO ensures that the algorithm 
maintains high performance even in large scale dynamic 
environments. 

II. LITERATURE REVIEW 

The HFSSP is important area of research in production 
scheduling due to its complexity and significance in real-
world manufacturing. HFSSP involves scheduling multiple 
jobs of various stages within parallel machines each stage 
having distinct capabilities which adds layers of complexity 
such as machine availability constraints, sequence dependent 
setup times and limited capacity. HFSSP in addition must 
often handle dynamic environment like random job arrivals, 
machine breakdowns, and fluctuating processing times, 
making it challenging to find optimal solutions. Researchers 
have explored many MHs techniques enhanced by ML to 
address these challenges effectively. 

A Genetic Programming Hyper-Heuristic (GPHH) has 
been proposed for dynamic energy efficient scheduling of 
HFSSP where GP employed to generate job sequencing and 
machine assignment rules. This approach is effective in 
environments characterized by machine breakdowns and 
random job arrival. By dynamically generating and optimizing 
scheduling rules the method is able of adapting to the 
stochastic nature of real-time scheduling environments [13]. 

In another approach the Shuffled Frog-Leaping Algorithm 
(SFLA) integrated with Q-learning (QL) to optimize 
distributed assembly hybrid flow shop scheduling. The Q-
learning component dynamically select search strategies 
guiding the algorithm global and local search operators. This 
cooperation between MHs and RL improve both solution 
diversity and convergence leading to better performance in 
distributed scheduling environments [14]. 

A Cooperative Memetic Algorithm (CMA) combined with 
RL based agent has been developed for energy efficient 
scheduling in distributed HFSSP settings. The RL agent 
enhances the algorithm ability to select appropriate local 
search operators based on the current problem state which 
significantly reduces energy consumption while maintaining 
high quality solutions. The method demonstrated significant 
improvements in achieving energy aware schedule in large 
scale manufacturing systems [15]. 

Further,  Multiobjective Memetic Algorithm incorporating 
PSO and QL-based local search have been introduced to 
optimize energy efficient scheduling in distributed hybrid flow 
shop. The QL mechanism allow the local search to 
dynamically adjust its parameters based on real-time feedback 
ensuring improved performance on energy consumption and 
scheduling efficiency in large scale distributed environment 
[16]. 

The Meta Reinforcement Learning MHs (MRLM) 
framework use RL to dynamically select search operators 
allowing the MHs to adapt to changes in worker productivity 
caused by learning and forgetting effects. This approach 

proved effective in improving scheduling performance 
especially in labor intensive industries where job processing 
times are affected by human factor[17]. 

Another study introduces a RL based task splitting strategy 
for HFSSP where QL is used to dynamically split tasks across 
machines in distributed system. The adaptability provided by 
RL allowed for significant improvements in makespan and 
resource utilization particularly in mass personalized 
manufacturing environments[18]. 

A novel approach that applies QL-based Teaching-
Learning Optimization (TLBO) has been used to address 
HFSSP with fuzzy processing times. QL dynamically adjusts 
the phases of the TLBO algorithm, enabling it to handle 
uncertainties in job processing times more effectively. This 
integration of ML into the optimization process significantly 
improved the robustness and efficiency of the scheduling 
outcomes[19]. 

Lastly SA has been employed to address HFSSP with 
complex constraints such as machine availability and delivery 
times. Although this approach does not incorporate ML it 
highlights the effectiveness of SA in achieving near-optimal 
solutions particularly for large-scale problem instances. The 
study demonstrates how dynamic parameter adjustment in SA 
contributes to better performance in hybrid flow shop 
scheduling[20]. 

III. PROBLEM DESCRIPTION 

The HFSSP presented in this paper involves the scheduling 
of 𝑛 jobs through two stages of production. The first stage 
consists of a single machine that processes all jobs, and the 
second stage includes 𝑚 dedicated parallel machines, where 
each machine can process a specific subset of jobs. Each job 𝐽𝑖 
 (where 𝑖 = 1,2, … , 𝑛) must be processed first on the common 
machine in Stage 1 and then assigned to one of the dedicated 
machines in Stage 2 based on the job's type. The primary 
objective is to minimize the makespan 𝐶𝑚𝑎𝑥, defined as the 
total time required to complete all jobs[1]. HFSSP has the 
following assumptions: 

• All jobs must be processed on the single machine in 
Stage 1 before being processed on any of the 
dedicated machines in Stage 2. 

• Each job 𝐽𝑖   has a specific release date 𝑟𝑖 , which is the 
time when the job becomes available for processing. 

• Each job 𝐽𝑖   has a specific delivery time 𝑑𝑖  , which is 
the latest time by which the job must be completed. 

• All machines in both stages are non-preemptive, 
meaning that once a job starts processing on a 
machine, it cannot be interrupted until completion. 

Notation 
𝑛: Number of jobs to be scheduled. 
𝐽𝑖 : The set of jobs 𝑖 = 1,2, … , 𝑛. 
𝑀𝑖 : The single common machine in the first stage. 

𝑀𝑗: Dedicated machines 𝑗 = 1,2, … , 𝑚 in the second stage. 

𝑝𝑖1: Processing time of job 𝑖 on the common machine. 
𝑝𝑖𝑗: Processing time of job 𝑖 on dedicated machine 𝑀𝑗. 

𝑟𝑖 : Release date of job 𝑖 (time when the job becomes 
available). 
𝑑𝑖: Delivery time of job 𝑖 (deadline by which the job must be 
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completed). 
𝐶𝑖1: The completion time of job 𝐽𝑖 on the common machine. 
𝐶𝑖2: The completion time of job 𝐽𝑖 on the dedicated machine. 
𝑆𝑖1: The start time of job 𝐽𝑖 on the common machine. 
𝑆𝑖2: The start time of job 𝐽𝑖 on the dedicated machine. 
𝐶𝑚𝑎𝑥: The makespan, or the total time to complete all jobs. 

min 𝐶𝑚𝑎𝑥 =  max
𝑖

{𝐶𝑖2}  (1) 

𝐶𝑖1  ≤  𝑆𝑖2 ,   ∀𝑖   (2) 

𝑆𝑖1  ≥  𝑟𝑖 ,   ∀𝑖   (3) 

𝐶𝑖2  ≤  𝑑𝑖,   ∀𝑖   (4) 

𝐶𝑖1 = 𝑆𝑖1 + 𝑝𝑖1,    𝐶𝑖2 = 𝑆𝑖2 + 𝑝𝑖𝑗     ,   ∀𝑖, 𝑗 (5) 

𝑆𝑖1  ≥  𝐶𝑘1 ,   𝑆𝑖2  ≥  𝐶𝑘2    ,   ∀𝑖 ≠ 𝑘  (6) 

The objective of the problem is to minimize the makespan 
as defined in (1). The first constraint (2) ensures that the first 
job processed on the common machine in Stage 1 before 
moving to its assigned dedicated machine in Stage 2. The 
second constraint (3) impose that no job can start processing 
before its release date to ensure that the job become available 
only after its designated release time. The third constraint (4) 
ensure that each job must be completed before or by its 
specific delivery time so respecting deadlines for job 
completion. The non-preemption constraint (5) dictate that 
once the job start processing on any machine it is must run 
uninterrupted until completion. This constraint guarantees that 
no job can be paused or preempted during processing. The last 
constraint is the machine availability constraint (6) that ensure 
that each machine can process only one job at a time 
preventing any overlap in job assignments on the same 
machine. This ensures that the scheduling adhere to the 
availability and capacity of the machines with each job 
waiting until the previous one is completed. These constraints 
collectively define the problem and guide the scheduling 
decisions to minimize the makespan[1]. 

IV. METHODOLOGY 

The methodology is applied to solve the HFSSP by 
integrating ACO for generating initial schedules and ILS for 
refining these schedules to enhance ACO’s exploitation 
capabilities and escaping local optima. PPO dynamically 
adjusts ACOILS parameters based on real-time performance 
improving the balance between exploration and exploitation to 
achieve more efficient scheduling solutions as shown in Fig. 1. 

A. Ant Colony Optimization 

ACO is a population based MHs inspired by the foraging 
behavior of ants. Ants leave pheromone trails on paths they 
traverse, and subsequent ants are more likely to follow these 
paths based on pheromone strength, creating a positive 
feedback loop. In ACO, artificial ants build solutions to 
optimization problems by probabilistically choosing 
components (such as in job assignments in scheduling 
problems) based on the intensity of the pheromone and the 
heuristic information. Over time, pheromone evaporation 
ensures that suboptimal solutions are less attractive. ACO is 
particularly well-suited for combinatorial optimization 
problems like the job shop scheduling and flow shop 
scheduling[4]. 

B. Iterated Local Search 

ILS is single-based MHs that focuses on the exploitation of 
local optima. Starting from an initial solution, ILS repeatedly 
applies a local search method to explore the neighborhood of 
the current solution. When a local optimum is found the 
algorithm perturbs the current solution to escape the local 
minimum and re-applies local search from the new starting 
point. The process of local search and perturbation continues 
iteratively enabling the algorithm to explore a larger search 
space and escape poor-quality local minima. ILS is often used 
for fine-tuning solutions in difficult optimization problems[5]. 

C. Hybrid ACO and ILS 

In this hybrid approach ACO is responsible for exploration 
(diversity) by constructing solutions based on pheromone 
trails, while ILS is used to exploit the best solutions found by 
ACO to refine them further using local search. The ILS helps 
ACO in enhancing the solution quality by

 

Fig. 1 The flow process of the LACOILS 
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focusing on exploitation (intensification) to reach near-
optimal solutions. The steps of algorithm1 hybrid ACOILS 
algorithm are as follow: 

1) Initialization: 

a) Set the ACO parameters such as the pheromone 

matrix, number of ants, evaporation rate, and heuristic factors. 

b) Set ILS parameters including perturbation strength 

and the local search method. 

c) Initialize the pheromone trails for the solution space. 

2) Ant Colony Exploration: 

a) For each iteration every ant constructs a solution 

based on pheromone strength and heuristic values. 

b) Ants probabilistically choose components to build 

their solutions using a balance of exploration (pheromone) and 

exploitation (heuristic values). 

3) Local Search (ILS): 

a) After each ant constructs a solution, apply the ILS 

method to refine it. 

b) Perform local search to explore the neighborhood of 

the solution and reach a local optimum. 

c) Perturb the local optimum if necessary to escape 

suboptimal local minima and perform further searches. 

4) Pheromone Update: 

a) If the solution found by ILS improves upon the best  

Algorithm 1: Hybrid ACOILS 

Initialize ACO parameters: 

     Pheromone matrix (𝜏): Initial pheromone levels for the solution space 

     Number of ants (𝑚): Size of the ant colony 

    Evaporation rate (𝜌): Controls how quickly pheromones decay 

    Alpha (𝛼): Weight of the pheromone influence in decision-making 

    Beta (𝛽): Weight of heuristic information influence in decision-making 

    Heuristic factors (𝜂): Problem-specific information such as job processing 

times or machine availability 

Initialize ILS parameters: 

    Perturbation strength: Determines how much a solution is modified to 

escape local optima 

    Local search method: Defines the technique used to refine solutions  

    Number of iterations: Maximum iterations for local search 

    Acceptance criterion: Condition to accept or reject new solutions 

Generate initial pheromone matrix (initialize pheromone trails with 𝜏₀) 

for each ACO iteration do 

    for each ant in the ant colony do 

        Construct a solution using ACO: 

            Select solution components based on pheromone trails (𝜏) and 

heuristic values (𝜂) 

            Probabilistically balance exploration and exploitation based on 

𝛼 𝑎𝑛𝑑 𝛽 

        Apply local search to the constructed solution using ILS: 

            Explore the neighborhood of the current solution using local search 

method 

            Perturb the solution if necessary to escape local minima 

        if the refined solution improves the current best solution then 

            Update the best solution found 

        Deposit pheromone on the paths/components of the improved solution: 

            Strength of deposition depends on the quality of the solution 

    end for 

    Evaporate pheromone globally (𝜏 =  (1 − 𝜌)  ∗  𝜏) to prevent stagnation 

and encourage exploration 

end for 

Output the best solution found by the hybrid ACO-ILS algorithm 

known solution (BKS), deposit pheromone on the solution 

components. 

b) Update the pheromone matrix based on the quality 

of the solution found. 

c) Evaporate pheromone to avoid premature 

convergence and enable exploration of new areas in the 

solution space. 

5) Termination: 

a) Repeat the process until a stopping criterion is met 

(maximum number of iterations). 

b) Output the best solution found. 

D. Proximal Policy Optimization 

PPO is a policy gradient based RL algorithm designed to 
improve training stability and performance. It optimizes the 
policy by directly updating it based on gradients using a 
combination of trust region methods and stochastic gradient 
descent. PPO simplifies the complexity of Trust Region Policy 
Optimization (TRPO) while maintaining strong 
performance[21]. 

PPO achieves this by using a clipped objective function 
that prevents the policy from making large updates, ensuring 
the agent’s actions do not change too drastically in a single 
update. This "proximal" step ensures that the policy update 
stays within a reasonable range of the current policy, 
improving stability while encouraging efficient exploration. 
The key components of PPO are Policy Network which maps 
the state to an action. The second component is value network 
(Critic) at which evaluates the expected return (advantage 
function) of the current state. Thirdly, clipped objective 
function where PPO uses a clipped surrogate objective to limit 
how much the policy can change between updates, which 
avoids large steps that could destabilize learning. The goal is 
to dynamically tune parameters of the hybrid ACOILS 
algorithm using PPO, which adjusts parameters like 
pheromone evaporation rate, exploration-exploitation balance, 
and perturbation strength in ILS. The PPO agent learns a 
policy to adjust these parameters based on the performance of 
the hybrid algorithm. The steps of algorithm2 PPO are as 
follow: 

1) Initialization: 

a) Initialize PPO parameters, such as the policy 

network, value network, learning rate, clipping threshold, and 

batch size. 

b) Define the action space for parameter tuning (the 

parameter of ACOILS). 

c) Set the initial policy and value networks (actor and 

critic). 

2) State Representation: 

a) Define the state as the current performance of the 

ACOILS algorithm, which could include metrics like the 

quality of the solution, iteration progress, and algorithm 

behavior (e.g., how many ants converge to the same solution). 

b) Collect performance feedback from the hybrid 

ACOILS algorithm to form the state. 
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3) Action Representation: 

a) Define the actions as adjustments to the ACOILS 

parameters. For example, actions might include: 

b) Adjusting the pheromone evaporation rate. 

c) Changing the number of iterations for local search. 

d) Modifying the balance between exploration and 

exploitation. 

4) Reward Calculation: 

a) The reward is based on the improvement in solution 

quality after tuning the parameters. For example, if the 

solution found by ACO-ILS improves significantly due to the 

tuned parameters, a higher reward is given. You can also 

consider speed or stability improvements. 

5) PPO Policy Update: 

a) For each update step, run ACO-ILS with the current 

parameters selected by the PPO policy. 

b) Compute the reward based on solution 

improvement. 

c) Use the value network to compute the advantage 

function, which estimates how much better the action was 

compared to the baseline. 

Algorithm 2: Proximal Policy Optimization 

Input: 

Initialize policy network (πθ) with random weights 

Initialize value network (Vθ) with random weights 

Set learning rates for actor and critic 

Set clipping threshold for PPO updates 

Set batch size and number of epochs 

 

Initialize ACO and ILS parameters (pheromone evaporation rate, local search 

parameters, etc.) 

Define action space (possible parameter ranges) 

while not converged do 

     

    for each episode (ACO-ILS run) do 

        Initialize state S (e.g., solution quality, algorithm performance metrics)        

         

        A = πθ(S)  // Select action (tune ACOILS parameters) based on current 

policy πθ 

        Execute action A (adjust pheromone rate, local search settings, etc.)        

         

        Run ACO-ILS for one full iteration using new parameters           

        NewState = Current state of ACO-ILS after running iteration 

        Reward = Improvement in solution quality, speed, or stability 

        Store (S, A, Reward, NewState) in memory 

         

        // Update current state 

        S = NewState 

    end for    

    Compute advantage A(S, A) using the value network 

    for each batch of experience do 

        Calculate the ratio of probabilities between old and new policies r(θ) 

        Use the clipped objective function to compute the surrogate loss: 

        L(θ) = min(r(θ) * A(S, A), clip(r(θ), 1 - ε, 1 + ε) * A(S, A)) 

        Perform gradient descent on L(θ) to update the policy network (actor)        

        Update the value network by minimizing the value loss: 

        L(V) = (V(S) - target_value)^2 

    end for 

end while 

Output: Best tuned parameters for ACO-ILS 

 

d) Update the policy network using the clipped 

objective function to ensure that parameter changes remain 

within a stable range. 

6) Repeat Until Convergence: 

a) Continue iterating through ACO-ILS runs, using the 

PPO agent to adjust the parameters dynamically. 

b) Stop when a predefined stopping criterion is reached 

(e.g., maximum iterations or convergence of solution quality). 

E. Experimental Setup 

The experiments were conducted using a laptop equipped 
with an AMD Ryzen 7 5800H processor, and 16GB of RAM. 
This hardware configuration ensures sufficient computational 
power to handle the large-scale optimization problems tackled 
in this study including the HFSSP.  To evaluate the 
performance of the proposed algorithm the problem instances 
were generated following the structure described in Hajji et 
al.’s work[20]. Various instance classes with differing job 
sizes (N=20,50,100,150) and multiple machine configurations 
are considered. Processing times, release dates, and delivery 
times are randomly generated from predefined ranges for each 
instance to ensure diverse and challenging set of test cases. 
The experiments included multiple iterations per instance to 
capture the variability and consistency of the solution quality 
with comparisons made against known lower bounds and 
computational benchmarks. 

V. RESULTS AND DISCUSSION 

The computational results of this study presented in this 
section. ACOILS and LACOILS applied to the HFSSP. While 
ACOILS used the Taguchi method for offline parameter 
tuning[22], LACOILS employed PPO to dynamically tune its 
parameters in real time. In table I PPO was used to  

Table I. Parameters values for LACOILS and ACOILS  

Parameter LACOILS ACOILS Role of the parameter 

Pheromone 

matrix (𝜏) 

0.1 0.3 Represents the pheromone trail 

strength, which influences the 

probability of choosing certain 

solution components. 

Number of 

ants (𝑚) 

Number of jobs The number of ants constructing 

solutions in each iteration. 

Evaporatio

n rate (𝜌) 

0.2 0.1 Controls how much pheromone 

is retained on each path after 

every iteration. 

Alpha (𝛼) 1 2 A parameter that weights the 

influence of pheromone trails on 

decision-making. 

Beta (𝛽) 2 2 A parameter that weights the 

influence of heuristic 

information (e.g., job durations, 

machine availability). 

Heuristic 

factors (𝜂) 

𝜂
=  1 𝑗𝑜𝑏 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒⁄  

Provide additional guidance 

during solution construction, 

such as job priority or shortest 

processing time. 

Perturbatio

n strength 

14% 20% Determines the magnitude of 

changes made to the current 

solution to escape local optima. 

Number of 

iterations 

372 484 The number of local search 

steps applied to improve 

solutions. 
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Table II. Comparison results of the proposed algorithms. 
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D
e
v
.

%
 

L
B

 

Cl1 SA 0.11 17 0.20 11 0.15 8 0.28 2 

ACOILS 0.23 12 0.24 9 0.19 7 0.33 0 

LACOILS 0.1 20 0.17 15 0.11 10 0.23 3 

Cl2 SA 0.21 17 0.25 9 0.18 2 0.40 1 

ACOILS 0.27 14 0.29 5 0.26 1 0.47 0 

LACOILS 0.19 21 0.2 12 0.16 3 0.36 2 

Cl3 SA 1.75 1 0.92 1 0.70 1 0.75 0 

ACOILS 1.86 0 1.12 0 0.74 1 0.93 0 

LACOILS 1.71 3 0.86 2 0.64 2 0.68 1 

Cl4 SA 0.18 17 0.26 8 0.34 1 0.34 1 

ACOILS 0.27 10 0.35 2 0.56 0 0.42 0 

LACOILS 0.24 14 0.28 6 0.41 1 0.37 1 

Cl5 SA 0.48 13 0.58 4 0.46 0 0.44 0 

ACOILS 0.51 8 0.68 1 0.55 0 0.57 0 

LACOILS 0.42 16 0.55 6 0.47 0 0.4 1 

continuously adjust the parameters which allow LACOILS 
to adapt efficiently to various scenarios. This dynamic tuning 
method helped LACOILS balance exploration and 
exploitation more effectively, leading to optimized solutions 
and improved algorithm efficiency. 

Table II compares the performance of three algorithms: 
SA[20], ACOILS, and LACOILS. The performance is 
evaluated in terms of percentage deviation (Dev.) from the 
lower bound (LB) across various problem sizes and instance 
classes. 

• For smaller instances (N=20), LACOILS outperforms 
both SA and ACOILS, showing the lowest percentage 
deviations. For example, for Class Cl1, LACOILS 
achieves a deviation of only 0.1%, whereas SA and 
ACOILS exhibit higher deviations 0.11% and 0.23% 
respectively. This indicates that incorporating learning 
for dynamic parameter adjustment in LACOILS 
improves solution quality for smaller instances. 

• As the problem size increases (N=150), LACOILS 
continues to show competitive performance but the 
deviations rise for all algorithms. For Class Cl5, 
LACOILS records a deviation of 0.4%, still 
outperforming ACOILS 0.57% and SA achieves the 
closer deviation for LACOILS of 0.44%. This 
highlights that LACOILS manages to balance 
exploration and exploitation better than ACOILS and 
SA, but LACOILS  remains slightly more effective for 
large problem sizes. 

LACOILS demonstrates clear improvements over 
ACOILS in smaller, medium, and large sized problems due to 
the PPO component that tunes algorithm parameters in real-
time. In Table III, LACOILS demonstrates superior 
computational efficiency across all problem instances 
compared to both ACOILS and SA, with the success largely 
attributed to its use of PPO for dynamic parameter tuning. For  

Table III. The Computation time of the proposed algorithm 

Instance Algorithm N = 20 N = 50 N = 100 N = 150 

Cl1 SA <1 s 6 s 32 s 7 s 

ACOILS 1.61 s 7.99 s 31.47 s 7.5 s 

LACOILS 0.86 s 5.82 s 28.74 s 5.55 s 

Cl2 SA 2 s 2 s 2 s 7 s 

ACOILS 1.83 s 1.94 s 2.92 s 8.35 s 

LACOILS 1.74 s 1.65 s 1.95 s 6.42 s 

Cl3 SA 3 s 2 min 4 min  14 min 

ACOILS 3.39 s 2.58 min 5.07 min 15.46 min 

LACOILS 2.89 s 1.43 min 3.69 min 13.38 min 

Cl4 SA <1 s 5 s 39 s 1 min 

ACOILS 0.78 s 5.43 s 42.97 s 1.25 min 

LACOILS 0.68 s 4.37 s 37.97 s 52.7 s 

Cl5 SA 2 s 20 s 2 min 13 min 

ACOILS 2.68 s 18.37 s 2.54 min 15.11 min 

LACOILS 1.91 s 14.57 s 1.88 min 11.26 min 

smaller problem sizes, such as in Cl1 and Cl2, LACOILS 
consistently achieves the fastest computation times, 
completing Cl1 (N = 20) in 0.86 seconds, significantly 
outperforming ACOILS and SA. As the problem size 
increases, particularly in more complex instances like Cl3 and 
Cl5, LACOILS continues to maintain a computational 
advantage. For example, in Cl5 (N = 150), LACOILS finishes 
in 11.26 minutes, compared to 15.11 minutes for ACOILS and 
13 minutes for SA. The ability of LACOILS to adaptively tune 
critical parameters such as pheromone evaporation and local 
search intensity in real time, through PPO, enables it to 
balance exploration and exploitation more effectively, thus 
reducing unnecessary computation. In contrast, ACOILS, 
without adaptive tuning, exhibits longer computation times 
due to its static parameter settings. While SA performs 
competitively in smaller instances, it struggles with larger 
problem sizes, highlighting the scalability and efficiency 
advantages of LACOILS driven by its integration of PPO for 
parameter optimization. 

In Table IV, the performance of heuristic and MHs 
algorithms for Class Cl1 is compared across problem sizes. 
Among the heuristics, Hjoh1 shows the poorest performance, 
with high deviation percentages and rare occurrences of 
hitting the lower bound, while Hjoh2 performs significantly 
better, with deviation percentages as low as 1% and frequent 
occurrences at the lower bound. HNEH also performs well but 
falls behind Hjoh2. In contrast, the MHs algorithms 
consistently outperform the heuristics. SA demonstrates strong 
performance with low deviation percentages and frequent 
lower bound hits, particularly for larger problem sizes.  
ACOILS performs similarly to SA but with slightly higher 
deviations. LACOILS achieves the best results overall, with 

Table IV. Comparative results of the proposed algorithm against BKS. 

Algorith

m 

N = 20 N = 50 N = 100 N = 150 

Dev.

% 

L

B 

Dev.

% 

L

B 

Dev.

% 

L

B 

Dev.

% 

L

B 

Hjoh1 8.1 1 3.99 0 2.07 0 1.40 0 

Hjoh2 1.00 6 0.21 7 0.18 2 0.30 0 

HNEH 3.10 4 1.5 3 0.70 2 0.72 1 

SA 0.11 17 0.20 11 0.15 8 0.28 2 

ACOILS 0.23 12 0.24 9 0.19 7 0.33 0 

LACOILS 0.1 20 0.17 15 0.11 10 0.23 3 
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the lowest deviations and most frequent lower bound hits 
across all problem sizes, demonstrating the effectiveness of 
dynamic parameter tuning in improving both solution quality 
and consistency. 

A. Performance Analysis 

Table V presents the Standard Deviation (SD), Mean, and  
Coefficient of Variation (CV)[23], which is calculated as 
follow: 

𝐶𝑉 =  
𝑆𝐷

𝑚𝑒𝑎𝑛
 × 100  (7) 

for each algorithm. These metrics help assess the quality of 
solutions along with the consistency and stability of each 
method. 

• LACOILS approach shows lower SD values in 
compared to ACOILS across multiple instances 
indicating that the learning based approach lead to 
more consistent performance. The lower SD indicate 
that LACOILS has less variability in its results which 
is crucial in real-world scheduling applications where 
stability is as important as solution quality. 

• The CV for LACOILS approach also lower than 
ACOILS confirms that LACOILS provide more stable 
and reliable results relative to the mean solution. This 
support the argument that learning based parameter 
tuning in LACOILS reduce the randomness in search 
behavior which leads to more controlled and 
predictable outcome. 

ACOILS shows higher SD and CV values reflects 
variability in performance. While ACOILS sometimes finds 
good solutions but its results are more inconsistent without 
dynamic learning based parameter adjustments. 

The Wilcoxon signed-rank test shown in table VI was 
conducted to statistically compare LACOILS and 
ACOILS[24]. This test assesses whether the performance 
differences between the two algorithms are statistically 
significant. The test reveals a significant improvement in the 
performance of LACOILS over ACOILS across different 
instances. The p-values reported in table VI are below the 
significance threshold (p<0.05) indicating that the enhanced 
learning mechanism in LACOILS leads to statistically 
significant better results compared to ACOILS. This statistical 
validation strengthens the argument that incorporating RL for 
parameter tuning in LACOILS meaningfully improves the  
algorithm's performance, leading to both more optimal and 
more consistent results compared to the non-learning version 
(ACOILS). 

Table V. Descriptive metrics of LACOILS performance 

Instance LACOILS ACOILS 

SD Mean CV SD Mean CV 

Cl1 28.7 1278 2.24% 37.5 1307 2.86% 

Cl2 32.64 1397 2.33% 39.72 1427 2.78% 

Cl3 40.83 1426 2.86% 48.7 1473 3.30% 

Cl4 61.5 1518 4.05% 66.53 1584 4.20% 

Cl5 64.37 1678 3.83% 74.62 1719 4.34% 

Table VI. Wilcoxon ranked test LACOILS against ACOILS 

Instance Wilcoxon test 

Cl1 0.039547 

Cl2 0.023861 

Cl3 0.037355 

Cl4 0.041869 

Cl5 0.034826 

Box plots in Fig. 2 visually compare the distributions of 
performance between LACOILS and ACOILS. Box plots 
consist of several key parts: the box, which represents the 
interquartile range (IQR) containing the middle 50% of the 
data points; the whiskers, which extend from the box to the 
minimum and maximum values, excluding outliers; the 
median line, located within the box, indicating the median of 
the data; and outliers, which are points outside the whiskers, 
representing extreme values[25]. Fig. 2.a LACOILS shows a 
narrower IQR and fewer outliers compared to Fig. 2.b 
ACOILS. This indicates that LACOILS not only achieves 
better median performance but also exhibits less variability in 
its results. The smaller spread of the whiskers and box 
demonstrates that LACOILS delivers more consistent 
outcomes. Fig. 2.b ACOILS shows wider IQR and more 
frequent outliers indicates the higher variability and less stable 
performance. This aligns with the findings from the CV and 
SD metrics where ACOILS show a more fluctuation in its 
results due to the lack of adaptive parameter tuning. The box 
plot analysis further support the conclusion that LACOILS 
provides more consistent and reliable performance in 
compared to ACOILS with fewer extreme outlier results and 
narrower range of deviations. This consistency is crucial in 
scheduling problems where predictability and repeatability are 
key for practical applications. 

B. Discussion 

The utilization of PPO plays critical role in dynamically 
tuning the parameters in LACOILS significantly improving its 
performance in compared to ACOILS and SA. PPO enable 
LACOILS to adjust parameters like pheromone evaporation 
and local search in online real time which optimizing the 

 

Fig. 2 The box plot distribution of the five groups of instances a) LACOILS b) 

ACOILS 
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balance between exploration and exploitation. This 
dynamic tuning is essential for achieving lower percentage 
deviations and more consistent results which evidenced by the 
lower SD and CV values in compared to ACOILS. The 
Wilcoxon test further demonstrate the advantage of learning 
based tuning with LACOILS consistently outperforming 
ACOILS while the box plots emphasize PPO impact by 
showing a narrower range of performance for LACOILS 
which indicating more stable and predictable results. The main 
advantages of LACOILS include its adaptability to different 
problem instances leading to improved solution quality and 
consistency particularly in small to medium sized problems 
and strong statistical validation through various performance 
metrics. However, LACOILS may be sensitive to the choice of 
PPO related parameters such as learning rates and exploration 
and exploitation trade-offs requiring extensive 
experimentation to fine tune these parameters effectively. This 
parameter sensitivity introduces additional layer of complexity 
complicating its application in real world and requiring further 
refinement in order to ensure robustness across different 
problem settings. 

VI. CONCLUSION 

This study presents a hybrid algorithm LACOILS that 
integrates ACO and ILS with PPO for dynamic parameter 
tuning to solve the HFSSP which achieving significant 
improvements over traditional methods like ACOILS and SA. 
The adaptive learning approach enabled LACOILS to better 
balance exploration and exploitation which leading to 
enhanced solution quality and computational efficiency across 
various problem sizes especially in smaller to medium 
instances. Compared to other studies which often rely on static 
parameter tuning the LACOILS real-time adjustments 
provides more effective way to handle the complexity and 
variability of HFSSP. The main novelty lies in the dynamic 
tuning capability enabled by PPO by which transform 
traditional MHs by making them more responsive to changing 
problem conditions. However, the approach sensitivity to PPO 
parameter selection and potential computational limitations for 
larger instances suggest the need for further optimization. 
Future work could explore alternative RL methods for 
parameter tuning and extend the approach to other complex 
scheduling scenarios. 
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