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Abstract—Malware, or malicious software, continues to evolve 

alongside increasing cyberattacks targeting individual devices and 

critical infrastructure. Traditional detection methods, such as 

signature-based detection, are often ineffective against new or 

polymorphic malware. Therefore, advanced malware detection 

methods are increasingly needed to counter these evolving threats. 

This study aims to compare the performance of various feature 

selection methods combined with the XGBoost algorithm for 

malware detection using the Drebin dataset, and to identify the best 

feature selection method to enhance accuracy and efficiency. The 

experimental results show that XGBoost with the Information Gain 

method achieves the highest accuracy of 98.7%, with faster training 

times than other methods like Chi-Squared and ANOVA, which each 

achieved an accuracy of 98.3%. Information Gain yielded the best 

performance in accuracy and training time efficiency, while Chi-

Squared and ANOVA offered competitive but slightly lower results. 

This study highlights that appropriate feature selection within 

machine learning algorithms can significantly improve malware 

detection accuracy, potentially aiding in real-world cybersecurity 

applications to prevent harmful cyberattacks. 

Keywords— android malware detection; drebin; information 

gain; XGBoost; machine learning. 

I.  INTRODUCTION  

Malware is a type of software specifically designed to 

damage or exploit computer systems [1]. It includes viruses, 

worms, ransomware, trojan horses, adware, and spyware. As 

cyber threats evolve, malware becomes more sophisticated, 

targeting both individual devices and critical infrastructure. The 

financial and data losses from malware attacks are significant, 

with global costs in 2021 estimated to be in the hundreds of 

billions of dollars. This underscores the urgent necessity for 

effective detection and prevention strategies  [2]. 

A well-known malware attack is WannaCry, a ransomware 

that attacked computer systems in May 2017. This attack spread 

to over 150 countries, encrypting data on infected machines and 

demanding ransom payments in Bitcoin. This incident 

demonstrated the massive potential damage a single type of 

malware can inflict on critical infrastructure [3]. Additionally, 

the Joker malware targeting Android devices highlights the 

increasing threat to mobile platforms. Joker infiltrates official 

applications and secretly registers users for premium services 

without their consent. This attack financially harms users and 

violates data privacy, adding a serious threat to the expanding 

mobile device ecosystem [4]. 

Traditional signature-based malware detection methods 

have limitations, particularly against new or polymorphic 

malware [1]. Machine learning techniques, which focus on 

behavioral analysis and anomaly detection, have been 

developed to address this issue but face challenges with high-

dimensional data, feature selection, and processing time. To 

improve efficiency and accuracy, advanced feature selection 

techniques and classification approaches that combine multiple 

methods can be applied, as they can tackle the challenges of 

high-dimensional data by filtering irrelevant features, reducing 

noise, and simplifying machine learning models. This improves 

the quality of data input into machine learning models, 

enhances malware detection, and differentiates between 

malicious and benign software [5]. 

Various studies between 2020 and 2024 have explored the 

combination of machine learning techniques with both static 

and dynamic analysis to enhance malware detection. The 

research by Rana and Sung [6] on Android malware detection 

using ensemble learning techniques like stacking, blending, and 

boosting achieved an accuracy of 97.96% on the DREBIN 

dataset. Similarly, Roseline and Geetha [7] applied tree-based 

ensemble methods, with XGBoost achieving the highest 

accuracy of 95.59%. Yin, Yuhua, et al. [8] introduced a hybrid 

feature selection method that improved the accuracy of 

intrusion detection, raising it from 82.25% to 84.24% on the 

UNSW-NB15 dataset. Sihwail, Omar, and Ariffin [9] employed 

memory forensic techniques for feature extraction, with a 

Support Vector Machine classifier achieving a high accuracy of 

98.5%, although time complexity remains a challenge. 

However, all these studies indicate a gap in the optimization of 

feature selection and processing speed for better malware 
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detection. The contribution of this research is to conduct a 

comparative analysis on feature selection methods with the 

XGBoost algorithm on the Drebin dataset. This research seeks 

to identify the optimal combination of feature selection and 

classification methods to enhance the accuracy and efficiency 

of machine learning-based malware detection compared to 

previous studies. 

This study compares various feature selection techniques 

with the XGBoost algorithm on the Drebin dataset, a popular 

Android malware dataset, focusing on machine learning-based 

malware detection. The goal is to identify the most effective 

feature selection method for enhancing malware detection 

accuracy and efficiency. The findings aim to provide insights 

into optimizing machine learning-based malware detection 

systems through effective feature selection. 

II. RESEARCH METHODS 

There are five main steps in this research, namely: data 

collection, pre-processing, modeling, evaluation, and result. 

The stages of the research are illustrated in Figure 1.  

 

A. Hardware and Software 

In computer science research, the combination of hardware 

and software is key to success [10]. Powerful hardware needs 

to be paired with suitable software for optimal performance, 

ensuring efficient achievement of research goals. In this study, 

a personal computer with the following hardware specifications 

was used: 

● Processor: 2,3 GHz Dual-Core Intel Core i5 

● RAM: 8 GB  

● SSD: 128 GB 

● Graphics Card: Intel Iris Plus Graphics 640 1536 MB 

 

In this study, Orange (https://orangedatamining.com/) was 

used for data cleaning and evaluating model performance with 

the XGBoost algorithm, specifically through the "Test and 

Score" widget. Additionally, Python was employed for data 

preprocessing, where the Random Under-Sampling (RUS) 

method was applied to balance the dataset, enabling a 

comparison of the model's effectiveness on both balanced and 

unbalanced datasets.  

 

B. Data Collection 

The Drebin dataset, available on Kaggle, consists of a single 

*.csv file with data on Android applications categorized as 

either malware or benign. It includes 15,036 entries, with 5,560 

labeled as Suspicious (S) and 9,476 as Benign (B). Each entry 

is described by 215 features, excluding the label column, which 

classifies each entry as either malware (‘S’) or benign (‘B’). 

The details of the Drebin dataset are summarized in Table I. 

 

Fig. 1. Research Stages 

TABLE I.  DETAILS ON DREBIN DATASET 

Dataset Name Drebin Android Malware 

Number of Files 1 

Number of Rows 15,036 

Number of Features 215 

Missing Values 5 

 

C. Pre-processing 

Pre-processing is the initial stage in data processing, 

involving cleaning invalid or missing values, data 

transformation, normalization, and encoding categorical 

https://www.zotero.org/google-docs/?63Bevx
https://orangedatamining.com/
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variables [11]. This step improves data quality and model 

accuracy by providing representative, noise-free features for the 

machine learning model. Class balancing tackles the issue of 

class imbalance, where one class contains far more samples 

than others, which can lead to poor performance in predicting 

the minority class [12]. Therefore, class balancing is very 

important because this imbalance can make the model more 

inclined to predict software as safe, which risks missing 

malware detection. By balancing the classes, the model can 

better recognize and accurately predict all classes.  

 

Before applying Random Under-Sampling (RUS), the 

Drebin dataset shows a significant class imbalance, with the 

majority class, goodware (B), dominating over the malware (S) 

class. RUS reduces the number of goodware samples to match 

the malware class, balancing the dataset and improving the 

model’s focus on both classes. In the original dataset, there are 

5,560 malware samples and 9,476 goodware samples, leading 

to bias. After applying RUS, both classes are balanced at 5,560 

data points each, reducing the total dataset size from 15,036 to 

11,120. By addressing the imbalance, RUS enhances the 

model's performance, particularly in identifying minority class 

instances, such as malware. 

Data cleaning ensures data quality in analysis, with a key 

step being the removal of missing values [13]. Missing data can 

result from collection errors or incomplete inputs, and removing 

them helps prevent distortion in models. However, excessive 

removal may reduce data representation and analysis accuracy. 

In this study, before the removal of missing values, there were 

11,120 data points. After the removal of missing values, the 

number of data points decreased to 11,115. 

Meanwhile, Feature selection is the technique of selecting 

the most important variables from a dataset to be used in 

building a machine learning model. The main goal of feature 

selection is to improve model performance by reducing data 

dimensionality, eliminating irrelevant or redundant features, 

and speeding up processing time [14]. In the context of malware 

detection, feature selection becomes crucial because malware 

datasets often contain a large number of varied features, which 

may include irrelevant or redundant information. These less 

important features not only slow down the model training 

process but can also negatively impact the model’s accuracy, 

thereby reducing its performance in detecting malicious threats.  

By reducing the number of features, making the model simpler, 

enhances prediction accuracy [15]. 

In this study, three feature selection techniques were used: 

Information Gain, Chi-Squared, and ANOVA. The selection 

was based on their effectiveness in significantly reducing data 

dimensions without compromising accuracy and processing 

time. Based on previous research, these three methods have 

demonstrated reliable capabilities in improving the accuracy 

and efficiency of models on the Drebin dataset. 

 

Information Gain (IG) measures how much information 

about a target class is gained by knowing a feature's value. It 

assesses feature relevance by observing the reduction in entropy 

(uncertainty) after the feature is known [16]. The formula for 

Information Gain can be seen in Equation 1. 

Gain(X,Y)=Entropy(x)−∑𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 (
|𝑋𝑣|

|𝑋|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑣))    (1) 

In this context, T represents the dataset, and X represents the 

feature being evaluated. The probability of feature X having the 

value x is denoted by 
|𝑋𝑣|

|𝑋|
. Additionally, Entropy(x) refers to the 

entropy of the dataset before considering the feature X. 

Chi-Squared (X²), this method measures the independence 

between features and the target label. To ascertain whether 

categorical variables and the target variable have a significant 

relationship, the Chi-squared test is employed. Features with a 

higher X² value are considered more relevant. The formula for 

Chi-Squared can be seen in Equation 2. 

𝑋2  =  ∑
(𝑓𝑂− 𝑓𝐸)2

𝑓𝐸
          (2) 

When 𝑓𝑂 represents the observed frequency and 𝑓𝐸 the 

expected frequency, a lower Chi-squared score occurs when the 

observed and expected frequencies are close to each other, 

indicating that the two features are likely independent [17]. 

The statistical technique known as Analysis of Variance 

(ANOVA) compares the ratio of variances between groups, 

such as the variances of two distinct samples. In classification 

analysis, ANOVA is particularly helpful when the data contains 

a categorical target variable and numerical input factors. This 

approach can be employed to evaluate the impact of specific 

factors on the observed outcomes and to identify if there are 

significant differences in the mean values across the groups 

being analyzed [18], [19]. 

 

D. Modeling 

The next stage after performing feature selection is 

Modeling. Modeling in data science is used to make predictions 

or decisions based on historical data. Some commonly used 

algorithms include XGBoost, Naive Bayes, k-Nearest 

Neighbors (kNN), and Random Forest.  

Extreme Gradient Boosting (XGBoost) is a boosting-based 

machine learning algorithm designed to enhance prediction 

accuracy by combining several simple models, such as decision 

trees. XGBoost is recognized for its ability to efficiently handle 

large and complex datasets due to its support for parallelization, 

which accelerates the training process. This technique makes 

XGBoost one of the most reliable algorithms for classification 

and regression tasks on large-scale data. The basic formula for 

XGboost can be seen in Equation 3. 

�̂�𝑖 =  ∑𝑘=1 
𝐾 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝛤          (3) 

In this case, 𝑥𝑖 refers to the input feature vector, 𝑓𝑘  

denotes the prediction score of the k-th tree, 𝑓𝑘  represents the 

https://www.zotero.org/google-docs/?CCL0oT
https://www.zotero.org/google-docs/?BaSb4O
https://www.zotero.org/google-docs/?FyJy4d
https://www.zotero.org/google-docs/?fPbFsC
https://www.zotero.org/google-docs/?L6GRvB
https://www.zotero.org/google-docs/?r7Vf2D
https://www.zotero.org/google-docs/?TRbVck
https://www.zotero.org/google-docs/?LfHgUw
https://www.zotero.org/google-docs/?7LbKdW
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number of regression trees, and 𝛤 represents the space of all 

possible trees. XGBoost minimizes a regularized objective 

function [20]. 

Naive Bayes is a classification technique that assumes all 

features are independent of one another and is based on the 

Bayes theorem. Although this assumption is rarely realistic, the 

algorithm remains effective in many classification tasks. The 

bayes formula is shown in Equation 4.  

𝑃(𝐴|𝐵)  =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
           (4) 

P(A|B)is the likelihood that event A will occur, given that 

event B has already taken place. While P(B|A) shows the 

chance of event B occurring provided that event A has occurred, 

P(A) shows the independent probability of event A. The total 

probability of event B is denoted by P(B). These ideas are 

commonly applied in statistical analysis and are crucial for 

computing conditional probabilities [21]. 

The k-Nearest Neighbors (kNN) algorithm is a simple, non-

parametric approach used for classification and regression 

tasks. Data points are categorized by taking into account the 

majority class of their k nearest neighbors, which is frequently 

determined by distance measurements like Euclidean distance. 

The kNN formula is presented in Equation 5.  

 𝑑𝑖  =  √∑𝑖=1
𝑝

(𝑥2𝑖 − 𝑥1𝑖 )
2            (5) 

This formula calculates distances in multi-dimensional 

space to identify the nearest neighbors for kNN classification or 

regression [22]. 

One ensemble learning approach that belongs to the class of 

homogeneous ensemble methods is random forest.  This 

method uses a randomly chosen subset of the available 

characteristics to train each decision tree. By using these 

random subsets, random forest aims to reduce the model's 

variance and improve prediction performance. This approach 

can be explored to test the effect of data variation on prediction 

performance [23]. 

 

E. Evaluation 

Validation is performed using 10-Fold Cross Validation, 

where the data is divided into 10 parts. The model is trained on 

9 parts and validated on the remaining part. This process repeats 

10 times, and the average performance across all folds gives a 

more accurate estimate of the model's performance [24]. This 

method aims to reduce bias and ensure the model can generalize 

well on unseen data.  

Following the validation process, Performance Evaluation is 

carried out using several metrics, namely Accuracy, F1-Score, 

Training Time, and Testing Time. Accuracy measures the 

percentage of correct predictions compared to the total 

predictions made, and it can be formulated as seen in Formula 

6. 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
            (6) 

In addition to accuracy, the F1-Score is a metric that 

combines precision and recall, making it especially useful in 

cases of class imbalance. The formula for calculating the F1-

Score is shown in Formula 7. 

F1-Score = 2  
 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
           (7) 

Precision measures how accurately the model identifies 

positive instances, while recall assesses the model's ability to 

capture all true positive cases. Precision aims to minimize false 

positives, emphasizing prediction quality, whereas Recall 

focuses on maximizing true positives, highlighting prediction 

quantity. Equation 8 and 9 illustrate these concepts. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (8) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (9) 

Finally, Training Time and Testing Time are evaluated to 

assess the model's efficiency. Training Time refers to how long 

it takes to train the model, whereas Testing Time indicates how 

quickly the model can make predictions after training is 

complete. 

III. RESULT AND DISCUSSION 

The experiment used a dataset with 5,560 malware and 

9,476 benign applications, initially imbalanced at a 1:1.7 ratio. 

Random Under-Sampling (RUS) was applied to balance the 

dataset to a 1:1 ratio, with 5,560 samples in each class, ensuring 

unbiased training. The next step involved using the backward 

elimination technique for feature selection, where all features 

are initially included, and the least significant ones are 

gradually removed. This method helps identify the most 

important features to enhance the model’s performance in 

detecting both malware and benign applications effectively 

[25]. 

TABLE II.  THE EXPERIMENT RESULTS WITHOUT FEATURE SELECTION 

Algorithms Accuracy F1-Score 
Training 

Test 

Testing 

Time 

XGBoost 98.7% 98.7% 7.989 0.818 

Naive Bayes 85.2% 85.1% 0.778 0.099 

kNN 97.8% 97.8% 0.978 0.978 

Random Forest 98.2% 98.2% 0.981 0.981 

In the first experiment, four classification algorithms were 

compared without feature selection. As shown in Table II, 

Naïve Bayes, despite its faster training time, shows lower 

accuracy at 85.2%, indicating that the feature independence 

assumption in Naïve Bayes is less suitable for malware 

detection on this Drebin dataset. The kNN algorithm achieves 

an accuracy of 97.8% but has a longer testing time due to the 

complexity of calculating distances between neighbors on large 

https://www.zotero.org/google-docs/?qWDlXy
https://www.zotero.org/google-docs/?Wt7uUi
https://www.zotero.org/google-docs/?kMQ9yq
https://www.zotero.org/google-docs/?oiBSdo
https://www.zotero.org/google-docs/?y4rCxT
https://www.zotero.org/google-docs/?EN98h2


 

 

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409 
 

 

p-ISSN 2301-7988, e-ISSN 2581-0588 

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024 

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024 

407 

 

 

datasets. Random Forest, with an accuracy of 98.2%, performs 

closely to XGBoost, although with a higher training time. 

Among the algorithms, XGBoost achieves the highest accuracy 

at 98.7% and demonstrates an optimal balance between 

accuracy and time efficiency. 

Information Gain, Chi-Squared, and ANOVA were applied 

to XGBoost and evaluated using 10-fold cross-validation (as 

shown in Tables III, IV, and V). XGBoost with Information 

Gain using 147 features achieved the highest performance with 

an accuracy and F1-score of 98.7%. Chi-Squared and ANOVA, 

using 148 and 149 features respectively, achieved slightly lower 

scores of 98.3%. The highest accuracy and F1-score were 

obtained by XGBoost without feature selection and with 

Information Gain. Reducing the number of features with 

Information Gain proved to be the most effective and efficient 

approach for XGBoost in this comparison.  

TABLE III.  PERFORMANCE OF THE XGBOOST WITH INFORMATION GAIN (IG) 

Number of 

Features 

XGBoost + Information Gain (IG) 

Accuracy F1-Score 
Training 

Time 
Testing Time 

146 98.5% 98.5% 5.572 0.557 

147 98.7% 98.7% 5.793 0.748 

148 98.7% 98.7% 5.293 0.556 

149 98.6% 98.6% 5.346 0.659 

150 98.6% 98.6% 5.302 0.66 

TABLE IV.   PERFORMANCE OF THE XGBOOST WITH CHI-SQUARED (X2) 

 Number 

of Features 

XGBoost + X2 

Accuracy F1-Score Training Time Testing Time 

146 98.1% 98.1% 5.199 0.539 

147 98.1% 98.1% 5.077 0.545 

148 98.3% 98.3% 5.068 0.605 

149 98.3% 98.3% 5.246 0.566 

150 98.3% 98.3% 5.559 0.549 

 

TABLE V.  PERFORMANCE OF THE XGBOOST WITH ANOVA 

Number of 

Features 

XGBoost + ANOVA 

Accuracy F1-Score 
Training 

Time 
Testing Time 

146 98.1% 98.1% 5.239 0.557 

147 98.1% 98.1% 5.102 0.641 

148 98.2% 98.2% 5.715 0.702 

149 98.3% 98.3% 5.939 0.665 

150 98.3% 98.3% 5.577 0.609 

 

A small difference in accuracy and F1-score between the 

Information Gain method (98.7%) and other methods like Chi-

Squared and ANOVA (98.3%) appears significant. Even a 

slight increase in accuracy can have a substantial impact on 

threat identification. For example, a 0.4% difference in 

accuracy may seem minor, but it indicates that a portion of 

previously undetected data has been correctly classified. 

After testing using a confusion matrix, it was shown that the 

XGBoost algorithm correctly predicted 5,465 data points in 

category P (Positive) and 5,439 data points in category N 

(Negative). However, there were misclassifications where 95 of 

P data were incorrectly classified as N, and 116 of N data were 

incorrectly classified as P, with a total of 11,115 data points 

tested (see Table VI). Error predictions raise serious concerns 

about the harmful impact of undetected malware. Nevertheless, 

XGBoost's performance remained the best compared to the 

other three algorithms. 

TABLE VI.  CONFUSION MATRIX OF XGBOOST ALGORITHM 

  Predicted  

  P N ∑ 

Actual 

P 546,560 95 55 

N 116 5,439 5555 

 ∑ 5581 5534 11115 

 

Table VII presents the performance of the XGBoost 

algorithm with various feature selection methods, aimed at 

optimizing accuracy and computational efficiency. Without 

feature selection, XGBoost achieves an accuracy and F1 score 

of 98.7%, with a training time of 7.989 seconds. Using the 

Information Gain method, which selects only 147 features, the 

model maintains the same accuracy and F1 score of 98.7%, but 

significantly reduces training time to 5.068 seconds. This 
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highlights the advantage of Information Gain in improving 

computational efficiency without compromising model 

performance. In contrast, the Chi-Squared (X²) and ANOVA 

methods, which select 148 and 149 features respectively, show 

a slight decrease in accuracy and F1 score to 98.3%, with 

training times of 5.068 and 5.939 seconds. In terms of 

efficiency and performance, Information Gain appears superior, 

as it optimally reduces training time without lowering accuracy 

or F1. 

Table VII. Performance Analysis Result 

Algorith

me 
SF 

Methods 

Num

ber 

of 

Feat

ures 

Accura

cy 
F1-

Score 

Traini

ng 

Time 

Testi

ng 

Time 

XGBoost - - 98.7% 98.7% 7.989 0.818 

XGBoost 

(147) 
Informati

on Gain  147 98.7% 98.7% 5.068 0.748 

XGBoost 

(148) X2 148 98.3% 98.3% 5.068 0.605 

XGBoost 

(149) ANOVA 149 98.3% 98.3% 5.939 0.665 

Stacking 

(DT, 

SVM, 

LR) [6] SBFS 8 97.96% 97.0% - - 

 

Additionally, comparison results from other studies show 

that the Stacking method (DT, SVM, LR) with SBFS feature 

selection achieves an accuracy of 97.96% with only 8 features, 

though with a slightly lower F1 score of 97%. Another 

approach, using XGBoost with LOFO, selects 30 features and 

achieves an accuracy of 95.6% and an F1 score of 93.9%. 

Unfortunately, information about the training and testing times 

for these models is unavailable. The illustration of comparison 

among algorithms are illustrated in Figure 2. 

 

Fig. 2. Accuracy Comparison between six combinations 

In the experiment, XGBoost achieved the highest 

performance in malware detection with an accuracy and F1-

score of 98.7%. This performance was maintained using 

Information Gain with 147 features, which also resulted in 

faster processing times. In addition, there is the issue of false 

positives, where benign (safe) applications are mistakenly 

classified as malware, which can disrupt users and lower trust 

in the detection system. Conversely, false negatives, where 

malicious (malware) applications are mistakenly classified as 

benign, pose potential security threats to the system. To reduce 

these errors, the feature selection technique used must be 

capable of choosing the most relevant features that distinguish 

malware from safe applications. Due to the high risk of false 

positives and false negatives in malware detection, it is not 

recommended to sacrifice accuracy and F1 scores for 

processing speed. Therefore, using more features, such as the 

proposed 147. Recommended over the fewer features suggested 

by other researchers to minimize false classifications.  

IV. CONCLUSION 

This research highlighted the effectiveness of machine 

learning, especially the XGBoost algorithm, for malware 

detection using the Drebin dataset. The study involved data 

collection, pre-processing with Random Under-Sampling 

(RUS) to balance the dataset, and applying feature selection 

methods like Information Gain, Chi-Squared, and ANOVA. 

XGBoost combined with Information Gain and 147 features 

achieved the highest accuracy and F1-score of 98.7% and faster 

processing speeds, outperforming other methods. The study 

underscores the importance of proper feature selection and 

balanced data to optimize machine learning performance in 

malware detection. 

 

REFERENCES 

[1] F. A. Rafrastara, C. Supriyanto, C. Paramita, Y. P. Astuti, and F. Ahmed, 

“Performance Improvement of Random Forest Algorithm for Malware 

Detection on Imbalanced Dataset using Random Under-Sampling 

Method,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 113–118, May 2023, 

doi: 10.30591/jpit.v8i2.5207. 

[2] Dr. Y. Perwej, S. Qamar Abbas, J. Pratap Dixit, Dr. N. Akhtar, and A. 

Kumar Jaiswal, “A Systematic Literature Review on the Cyber Security,” 

Int. J. Sci. Res. Manag., vol. 9, no. 12, pp. 669–710, Dec. 2021, doi: 

10.18535/ijsrm/v9i12.ec04. 

[3] C. Beaman, A. Barkworth, T. D. Akande, S. Hakak, and M. K. Khan, 

“Ransomware: Recent advances, analysis, challenges and future research 

directions,” Comput. Secur., vol. 111, p. 102490, Dec. 2021, doi: 

10.1016/j.cose.2021.102490. 

[4] L. Wang et al., “MalRadar: Demystifying Android Malware in the New 

Era,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6, no. 2, pp. 1–27, May 

2022, doi: 10.1145/3530906. 

[5] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, B. A. S. Al-rimy, T. A. E. Eisa, 

and A. A. H. Elnour, “Malware Detection Issues, Challenges, and Future 

Directions: A Survey,” Appl. Sci., vol. 12, no. 17, p. 8482, Aug. 2022, 

doi: 10.3390/app12178482. 

[6] Md. S. Rana and A. H. Sung, “Evaluation of Advanced Ensemble 

Learning Techniques for Android Malware Detection,” Vietnam J. 

Comput. Sci., vol. 07, no. 02, pp. 145–159, May 2020, doi: 

10.1142/S2196888820500086. 

[7] S. A. Roseline and S. Geetha, “Android Malware Detection and 

Classification using LOFO Feature Selection and Tree-based Models,” J. 

Phys. Conf. Ser., vol. 1911, no. 1, p. 012031, May 2021, doi: 

https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL


 

 

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409 
 

 

p-ISSN 2301-7988, e-ISSN 2581-0588 

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024 

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024 

409 

 

 

10.1088/1742-6596/1911/1/012031. 

[8] Y. Yin et al., “IGRF-RFE: a hybrid feature selection method for MLP-

based network intrusion detection on UNSW-NB15 dataset,” J. Big Data, 

vol. 10, no. 1, p. 15, Feb. 2023, doi: 10.1186/s40537-023-00694-8. 

[9] R. Sihwail, K. Omar, and K. Akram Zainol Ariffin, “An Effective 

Memory Analysis for Malware Detection and Classification,” Comput. 

Mater. Contin., vol. 67, no. 2, pp. 2301–2320, 2021, doi: 

10.32604/cmc.2021.014510. 

[10] A. G. Baydin et al., “Toward Machine Learning Optimization of 

Experimental Design,” Nucl. Phys. News, vol. 31, no. 1, pp. 25–28, Jan. 

2021, doi: 10.1080/10619127.2021.1881364. 

[11] V. Çetin and O. Yıldız, “A comprehensive review on data preprocessing 

techniques in data analysis,” Pamukkale Univ. J. Eng. Sci., vol. 28, no. 2, 

pp. 299–312, 2022, doi: 10.5505/pajes.2021.62687. 

[12] K. Hwang, W. Kang, and Y. Jung, “Application of the class-balancing 

strategies with bootstrapping for fitting logistic regression models for 

post-fire tree mortality in South Korea,” Environ. Ecol. Stat., vol. 30, no. 

3, pp. 575–598, Sep. 2023, doi: 10.1007/s10651-023-00573-8. 

[13] Z. Abedjan et al., “Detecting data errors: where are we and what needs to 

be done?,” Proc. VLDB Endow., vol. 9, no. 12, pp. 993–1004, Aug. 2016, 

doi: 10.14778/2994509.2994518. 

[14] STMIK Lombok, S. Saikin, S. Fadli, STMIK Lombok, M. Ashari, and 

STMIK Lombok, “Optimization of Support Vector Machine Method 

Using Feature Selection to Improve Classification Results,” JISAJurnal 

Inform. Dan Sains, vol. 4, no. 1, pp. 22–27, Jun. 2021, doi: 

10.31326/jisa.v4i1.881. 

[15] M. Al-Omari and Q. A. Al-Haija, “Towards Robust IDSs: An Integrated 

Approach of Hybrid Feature Selection and Machine Learning,” J. 

Internet Serv. Inf. Secur., vol. 14, no. 3, pp. 47–67, Aug. 2024, doi: 

10.58346/JISIS.2024.I2.004. 

[16] S. Tangirala, “Evaluating the Impact of GINI Index and Information Gain 

on Classification using Decision Tree Classifier Algorithm*,” Int. J. Adv. 

Comput. Sci. Appl., vol. 11, no. 2, 2020, doi: 

10.14569/IJACSA.2020.0110277. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[17] N. Wijaya, “Evaluation of Naïve Bayes and Chi-Square performance for 

Classification of Occupancy House,” Int. J. Inform. Comput., vol. 1, no. 

2, p. 46, Feb. 2020, doi: 10.35842/ijicom.v1i2.20. 

[18] K. Dissanayake and M. G. Md Johar, “Comparative Study on Heart 

Disease Prediction Using Feature Selection Techniques on Classification 

Algorithms,” Appl. Comput. Intell. Soft Comput., vol. 2021, pp. 1–17, 

Nov. 2021, doi: 10.1155/2021/5581806. 

[19] U. Moorthy and U. D. Gandhi, “A novel optimal feature selection 

technique for medical data classification using ANOVA based whale 

optimization,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 3, pp. 

3527–3538, Mar. 2021, doi: 10.1007/s12652-020-02592-w. 

[20] S. Chehreh Chelgani, H. Nasiri, and A. Tohry, “Modeling of particle sizes 

for industrial HPGR products by a unique explainable AI tool- A 

‘Conscious Lab’ development,” Adv. Powder Technol., vol. 32, no. 11, 

pp. 4141–4148, Nov. 2021, doi: 10.1016/j.apt.2021.09.020. 

[21] O. Uludağ and A. Gürsoy, “On the Financial Situation Analysis with 

KNN and Naive Bayes Classification Algorithms,” Iğdır Üniversitesi Fen 

Bilim. Enstitüsü Derg., vol. 10, no. 4, pp. 2881–2888, Dec. 2020, doi: 

10.21597/jist.703004. 

[22] Z. Lubis, P. Sihombing, and H. Mawengkang, “Optimization of K Value 

at the K-NN algorithm in clustering using the expectation maximization 

algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, p. 012133, 

Jan. 2020, doi: 10.1088/1757-899X/725/1/012133. 

[23] “Prediction of Heart Disease Using Feature Selection and Random Forest 

Ensemble Method,” Int. J. Pharm. Res., vol. 12, no. 04, Jun. 2020, doi: 

10.31838/ijpr/2020.12.04.013. 

[24] F. Mohr and J. N. Van Rijn, “Fast and Informative Model Selection Using 

Learning Curve Cross-Validation,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 45, no. 8, pp. 9669–9680, Aug. 2023, doi: 

10.1109/TPAMI.2023.3251957. 

[25] S. Farahdiba, D. Kartini, R. A. Nugroho, R. Herteno, and T. H. Saragih, 

“Backward Elimination for Feature Selection on Breast Cancer 

Classification Using Logistic Regression and Support Vector Machine 

Algorithms,” IJCCS Indones. J. Comput. Cybern. Syst., vol. 17, no. 4, p. 

429, Oct. 2023, doi: 10.22146/ijccs.88926. 

 

https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL

