

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024

403

Comparative Analysis of Feature Selection Methods

with XGBoost for Malware Detection on the Drebin

Dataset

Ines Aulia Latifah[1], Fauzi Adi Rafrastara[2]*, Jevan Bintoro[3], Wildanil Ghozi[4], Waleed Mahgoub Osman[5]

Department of Informatics Engineering, Faculty of Computer Science

Universitas Dian Nuswantoro, Indonesia[1][2][3][4]

Mathematics Department, College of Education

Sudan University of Science and Technology, Sudan[5]

111202113408@mhs.dinus.ac.id[1], fauziadi@dsn.dinus.ac.id[2], 111202113433@mhs.dinus.ac.id[3],

wildanil.ghozi@dsn.dinus.ac.id[4], waleedmo@sustech.edu[5]

Abstract—Malware, or malicious software, continues to evolve

alongside increasing cyberattacks targeting individual devices and

critical infrastructure. Traditional detection methods, such as

signature-based detection, are often ineffective against new or

polymorphic malware. Therefore, advanced malware detection

methods are increasingly needed to counter these evolving threats.

This study aims to compare the performance of various feature

selection methods combined with the XGBoost algorithm for

malware detection using the Drebin dataset, and to identify the best

feature selection method to enhance accuracy and efficiency. The

experimental results show that XGBoost with the Information Gain

method achieves the highest accuracy of 98.7%, with faster training

times than other methods like Chi-Squared and ANOVA, which each

achieved an accuracy of 98.3%. Information Gain yielded the best

performance in accuracy and training time efficiency, while Chi-

Squared and ANOVA offered competitive but slightly lower results.

This study highlights that appropriate feature selection within

machine learning algorithms can significantly improve malware

detection accuracy, potentially aiding in real-world cybersecurity

applications to prevent harmful cyberattacks.

Keywords— android malware detection; drebin; information

gain; XGBoost; machine learning.

I. INTRODUCTION

Malware is a type of software specifically designed to

damage or exploit computer systems [1]. It includes viruses,

worms, ransomware, trojan horses, adware, and spyware. As

cyber threats evolve, malware becomes more sophisticated,

targeting both individual devices and critical infrastructure. The

financial and data losses from malware attacks are significant,

with global costs in 2021 estimated to be in the hundreds of

billions of dollars. This underscores the urgent necessity for

effective detection and prevention strategies [2].

A well-known malware attack is WannaCry, a ransomware

that attacked computer systems in May 2017. This attack spread

to over 150 countries, encrypting data on infected machines and

demanding ransom payments in Bitcoin. This incident

demonstrated the massive potential damage a single type of

malware can inflict on critical infrastructure [3]. Additionally,

the Joker malware targeting Android devices highlights the

increasing threat to mobile platforms. Joker infiltrates official

applications and secretly registers users for premium services

without their consent. This attack financially harms users and

violates data privacy, adding a serious threat to the expanding

mobile device ecosystem [4].

Traditional signature-based malware detection methods

have limitations, particularly against new or polymorphic

malware [1]. Machine learning techniques, which focus on

behavioral analysis and anomaly detection, have been

developed to address this issue but face challenges with high-

dimensional data, feature selection, and processing time. To

improve efficiency and accuracy, advanced feature selection

techniques and classification approaches that combine multiple

methods can be applied, as they can tackle the challenges of

high-dimensional data by filtering irrelevant features, reducing

noise, and simplifying machine learning models. This improves

the quality of data input into machine learning models,

enhances malware detection, and differentiates between

malicious and benign software [5].

Various studies between 2020 and 2024 have explored the

combination of machine learning techniques with both static

and dynamic analysis to enhance malware detection. The

research by Rana and Sung [6] on Android malware detection

using ensemble learning techniques like stacking, blending, and

boosting achieved an accuracy of 97.96% on the DREBIN

dataset. Similarly, Roseline and Geetha [7] applied tree-based

ensemble methods, with XGBoost achieving the highest

accuracy of 95.59%. Yin, Yuhua, et al. [8] introduced a hybrid

feature selection method that improved the accuracy of

intrusion detection, raising it from 82.25% to 84.24% on the

UNSW-NB15 dataset. Sihwail, Omar, and Ariffin [9] employed

memory forensic techniques for feature extraction, with a

Support Vector Machine classifier achieving a high accuracy of

98.5%, although time complexity remains a challenge.

However, all these studies indicate a gap in the optimization of

feature selection and processing speed for better malware

https://www.zotero.org/google-docs/?1b7aCd
https://www.zotero.org/google-docs/?uvLpUp
https://www.zotero.org/google-docs/?fmAxFR
https://www.zotero.org/google-docs/?gEwuzF
https://www.zotero.org/google-docs/?WkaYOk
https://www.zotero.org/google-docs/?HjuGSn
https://www.zotero.org/google-docs/?89ttWz
https://www.zotero.org/google-docs/?xX2CUe
https://www.zotero.org/google-docs/?1YiNNx

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024

404

detection. The contribution of this research is to conduct a

comparative analysis on feature selection methods with the

XGBoost algorithm on the Drebin dataset. This research seeks

to identify the optimal combination of feature selection and

classification methods to enhance the accuracy and efficiency

of machine learning-based malware detection compared to

previous studies.

This study compares various feature selection techniques

with the XGBoost algorithm on the Drebin dataset, a popular

Android malware dataset, focusing on machine learning-based

malware detection. The goal is to identify the most effective

feature selection method for enhancing malware detection

accuracy and efficiency. The findings aim to provide insights

into optimizing machine learning-based malware detection

systems through effective feature selection.

II. RESEARCH METHODS

There are five main steps in this research, namely: data

collection, pre-processing, modeling, evaluation, and result.

The stages of the research are illustrated in Figure 1.

A. Hardware and Software

In computer science research, the combination of hardware

and software is key to success [10]. Powerful hardware needs

to be paired with suitable software for optimal performance,

ensuring efficient achievement of research goals. In this study,

a personal computer with the following hardware specifications

was used:

● Processor: 2,3 GHz Dual-Core Intel Core i5

● RAM: 8 GB

● SSD: 128 GB

● Graphics Card: Intel Iris Plus Graphics 640 1536 MB

In this study, Orange (https://orangedatamining.com/) was

used for data cleaning and evaluating model performance with

the XGBoost algorithm, specifically through the "Test and

Score" widget. Additionally, Python was employed for data

preprocessing, where the Random Under-Sampling (RUS)

method was applied to balance the dataset, enabling a

comparison of the model's effectiveness on both balanced and

unbalanced datasets.

B. Data Collection

The Drebin dataset, available on Kaggle, consists of a single

*.csv file with data on Android applications categorized as

either malware or benign. It includes 15,036 entries, with 5,560

labeled as Suspicious (S) and 9,476 as Benign (B). Each entry

is described by 215 features, excluding the label column, which

classifies each entry as either malware (‘S’) or benign (‘B’).

The details of the Drebin dataset are summarized in Table I.

Fig. 1. Research Stages

TABLE I. DETAILS ON DREBIN DATASET

Dataset Name Drebin Android Malware

Number of Files 1

Number of Rows 15,036

Number of Features 215

Missing Values 5

C. Pre-processing

Pre-processing is the initial stage in data processing,

involving cleaning invalid or missing values, data

transformation, normalization, and encoding categorical

https://www.zotero.org/google-docs/?63Bevx
https://orangedatamining.com/

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024

405

variables [11]. This step improves data quality and model

accuracy by providing representative, noise-free features for the

machine learning model. Class balancing tackles the issue of

class imbalance, where one class contains far more samples

than others, which can lead to poor performance in predicting

the minority class [12]. Therefore, class balancing is very

important because this imbalance can make the model more

inclined to predict software as safe, which risks missing

malware detection. By balancing the classes, the model can

better recognize and accurately predict all classes.

Before applying Random Under-Sampling (RUS), the

Drebin dataset shows a significant class imbalance, with the

majority class, goodware (B), dominating over the malware (S)

class. RUS reduces the number of goodware samples to match

the malware class, balancing the dataset and improving the

model’s focus on both classes. In the original dataset, there are

5,560 malware samples and 9,476 goodware samples, leading

to bias. After applying RUS, both classes are balanced at 5,560

data points each, reducing the total dataset size from 15,036 to

11,120. By addressing the imbalance, RUS enhances the

model's performance, particularly in identifying minority class

instances, such as malware.

Data cleaning ensures data quality in analysis, with a key

step being the removal of missing values [13]. Missing data can

result from collection errors or incomplete inputs, and removing

them helps prevent distortion in models. However, excessive

removal may reduce data representation and analysis accuracy.

In this study, before the removal of missing values, there were

11,120 data points. After the removal of missing values, the

number of data points decreased to 11,115.

Meanwhile, Feature selection is the technique of selecting

the most important variables from a dataset to be used in

building a machine learning model. The main goal of feature

selection is to improve model performance by reducing data

dimensionality, eliminating irrelevant or redundant features,

and speeding up processing time [14]. In the context of malware

detection, feature selection becomes crucial because malware

datasets often contain a large number of varied features, which

may include irrelevant or redundant information. These less

important features not only slow down the model training

process but can also negatively impact the model’s accuracy,

thereby reducing its performance in detecting malicious threats.

By reducing the number of features, making the model simpler,

enhances prediction accuracy [15].

In this study, three feature selection techniques were used:

Information Gain, Chi-Squared, and ANOVA. The selection

was based on their effectiveness in significantly reducing data

dimensions without compromising accuracy and processing

time. Based on previous research, these three methods have

demonstrated reliable capabilities in improving the accuracy

and efficiency of models on the Drebin dataset.

Information Gain (IG) measures how much information

about a target class is gained by knowing a feature's value. It

assesses feature relevance by observing the reduction in entropy

(uncertainty) after the feature is known [16]. The formula for

Information Gain can be seen in Equation 1.

Gain(X,Y)=Entropy(x)−∑𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 (
|𝑋𝑣|

|𝑋|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑣)) (1)

In this context, T represents the dataset, and X represents the

feature being evaluated. The probability of feature X having the

value x is denoted by
|𝑋𝑣|

|𝑋|
. Additionally, Entropy(x) refers to the

entropy of the dataset before considering the feature X.

Chi-Squared (X²), this method measures the independence

between features and the target label. To ascertain whether

categorical variables and the target variable have a significant

relationship, the Chi-squared test is employed. Features with a

higher X² value are considered more relevant. The formula for

Chi-Squared can be seen in Equation 2.

𝑋2 = ∑
(𝑓𝑂− 𝑓𝐸)2

𝑓𝐸
 (2)

When 𝑓𝑂 represents the observed frequency and 𝑓𝐸 the

expected frequency, a lower Chi-squared score occurs when the

observed and expected frequencies are close to each other,

indicating that the two features are likely independent [17].

The statistical technique known as Analysis of Variance

(ANOVA) compares the ratio of variances between groups,

such as the variances of two distinct samples. In classification

analysis, ANOVA is particularly helpful when the data contains

a categorical target variable and numerical input factors. This

approach can be employed to evaluate the impact of specific

factors on the observed outcomes and to identify if there are

significant differences in the mean values across the groups

being analyzed [18], [19].

D. Modeling

The next stage after performing feature selection is

Modeling. Modeling in data science is used to make predictions

or decisions based on historical data. Some commonly used

algorithms include XGBoost, Naive Bayes, k-Nearest

Neighbors (kNN), and Random Forest.

Extreme Gradient Boosting (XGBoost) is a boosting-based

machine learning algorithm designed to enhance prediction

accuracy by combining several simple models, such as decision

trees. XGBoost is recognized for its ability to efficiently handle

large and complex datasets due to its support for parallelization,

which accelerates the training process. This technique makes

XGBoost one of the most reliable algorithms for classification

and regression tasks on large-scale data. The basic formula for

XGboost can be seen in Equation 3.

�̂�𝑖 = ∑𝑘=1
𝐾 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝛤 (3)

In this case, 𝑥𝑖 refers to the input feature vector, 𝑓𝑘

denotes the prediction score of the k-th tree, 𝑓𝑘 represents the

https://www.zotero.org/google-docs/?CCL0oT
https://www.zotero.org/google-docs/?BaSb4O
https://www.zotero.org/google-docs/?FyJy4d
https://www.zotero.org/google-docs/?fPbFsC
https://www.zotero.org/google-docs/?L6GRvB
https://www.zotero.org/google-docs/?r7Vf2D
https://www.zotero.org/google-docs/?TRbVck
https://www.zotero.org/google-docs/?LfHgUw
https://www.zotero.org/google-docs/?7LbKdW

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024

406

number of regression trees, and 𝛤 represents the space of all

possible trees. XGBoost minimizes a regularized objective

function [20].

Naive Bayes is a classification technique that assumes all

features are independent of one another and is based on the

Bayes theorem. Although this assumption is rarely realistic, the

algorithm remains effective in many classification tasks. The

bayes formula is shown in Equation 4.

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (4)

P(A|B)is the likelihood that event A will occur, given that

event B has already taken place. While P(B|A) shows the

chance of event B occurring provided that event A has occurred,

P(A) shows the independent probability of event A. The total

probability of event B is denoted by P(B). These ideas are

commonly applied in statistical analysis and are crucial for

computing conditional probabilities [21].

The k-Nearest Neighbors (kNN) algorithm is a simple, non-

parametric approach used for classification and regression

tasks. Data points are categorized by taking into account the

majority class of their k nearest neighbors, which is frequently

determined by distance measurements like Euclidean distance.

The kNN formula is presented in Equation 5.

 𝑑𝑖 = √∑𝑖=1
𝑝

(𝑥2𝑖 − 𝑥1𝑖)
2 (5)

This formula calculates distances in multi-dimensional

space to identify the nearest neighbors for kNN classification or

regression [22].

One ensemble learning approach that belongs to the class of

homogeneous ensemble methods is random forest. This

method uses a randomly chosen subset of the available

characteristics to train each decision tree. By using these

random subsets, random forest aims to reduce the model's

variance and improve prediction performance. This approach

can be explored to test the effect of data variation on prediction

performance [23].

E. Evaluation

Validation is performed using 10-Fold Cross Validation,

where the data is divided into 10 parts. The model is trained on

9 parts and validated on the remaining part. This process repeats

10 times, and the average performance across all folds gives a

more accurate estimate of the model's performance [24]. This

method aims to reduce bias and ensure the model can generalize

well on unseen data.

Following the validation process, Performance Evaluation is

carried out using several metrics, namely Accuracy, F1-Score,

Training Time, and Testing Time. Accuracy measures the

percentage of correct predictions compared to the total

predictions made, and it can be formulated as seen in Formula

6.

Accuracy =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
 (6)

In addition to accuracy, the F1-Score is a metric that

combines precision and recall, making it especially useful in

cases of class imbalance. The formula for calculating the F1-

Score is shown in Formula 7.

F1-Score = 2
 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (7)

Precision measures how accurately the model identifies

positive instances, while recall assesses the model's ability to

capture all true positive cases. Precision aims to minimize false

positives, emphasizing prediction quality, whereas Recall

focuses on maximizing true positives, highlighting prediction

quantity. Equation 8 and 9 illustrate these concepts.

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8)

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9)

Finally, Training Time and Testing Time are evaluated to

assess the model's efficiency. Training Time refers to how long

it takes to train the model, whereas Testing Time indicates how

quickly the model can make predictions after training is

complete.

III. RESULT AND DISCUSSION

The experiment used a dataset with 5,560 malware and

9,476 benign applications, initially imbalanced at a 1:1.7 ratio.

Random Under-Sampling (RUS) was applied to balance the

dataset to a 1:1 ratio, with 5,560 samples in each class, ensuring

unbiased training. The next step involved using the backward

elimination technique for feature selection, where all features

are initially included, and the least significant ones are

gradually removed. This method helps identify the most

important features to enhance the model’s performance in

detecting both malware and benign applications effectively

[25].

TABLE II. THE EXPERIMENT RESULTS WITHOUT FEATURE SELECTION

Algorithms Accuracy F1-Score
Training

Test

Testing

Time

XGBoost 98.7% 98.7% 7.989 0.818

Naive Bayes 85.2% 85.1% 0.778 0.099

kNN 97.8% 97.8% 0.978 0.978

Random Forest 98.2% 98.2% 0.981 0.981

In the first experiment, four classification algorithms were

compared without feature selection. As shown in Table II,

Naïve Bayes, despite its faster training time, shows lower

accuracy at 85.2%, indicating that the feature independence

assumption in Naïve Bayes is less suitable for malware

detection on this Drebin dataset. The kNN algorithm achieves

an accuracy of 97.8% but has a longer testing time due to the

complexity of calculating distances between neighbors on large

https://www.zotero.org/google-docs/?qWDlXy
https://www.zotero.org/google-docs/?Wt7uUi
https://www.zotero.org/google-docs/?kMQ9yq
https://www.zotero.org/google-docs/?oiBSdo
https://www.zotero.org/google-docs/?y4rCxT
https://www.zotero.org/google-docs/?EN98h2

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024

407

datasets. Random Forest, with an accuracy of 98.2%, performs

closely to XGBoost, although with a higher training time.

Among the algorithms, XGBoost achieves the highest accuracy

at 98.7% and demonstrates an optimal balance between

accuracy and time efficiency.

Information Gain, Chi-Squared, and ANOVA were applied

to XGBoost and evaluated using 10-fold cross-validation (as

shown in Tables III, IV, and V). XGBoost with Information

Gain using 147 features achieved the highest performance with

an accuracy and F1-score of 98.7%. Chi-Squared and ANOVA,

using 148 and 149 features respectively, achieved slightly lower

scores of 98.3%. The highest accuracy and F1-score were

obtained by XGBoost without feature selection and with

Information Gain. Reducing the number of features with

Information Gain proved to be the most effective and efficient

approach for XGBoost in this comparison.

TABLE III. PERFORMANCE OF THE XGBOOST WITH INFORMATION GAIN (IG)

Number of

Features

XGBoost + Information Gain (IG)

Accuracy F1-Score
Training

Time
Testing Time

146 98.5% 98.5% 5.572 0.557

147 98.7% 98.7% 5.793 0.748

148 98.7% 98.7% 5.293 0.556

149 98.6% 98.6% 5.346 0.659

150 98.6% 98.6% 5.302 0.66

TABLE IV. PERFORMANCE OF THE XGBOOST WITH CHI-SQUARED (X2)

 Number

of Features

XGBoost + X2

Accuracy F1-Score Training Time Testing Time

146 98.1% 98.1% 5.199 0.539

147 98.1% 98.1% 5.077 0.545

148 98.3% 98.3% 5.068 0.605

149 98.3% 98.3% 5.246 0.566

150 98.3% 98.3% 5.559 0.549

TABLE V. PERFORMANCE OF THE XGBOOST WITH ANOVA

Number of

Features

XGBoost + ANOVA

Accuracy F1-Score
Training

Time
Testing Time

146 98.1% 98.1% 5.239 0.557

147 98.1% 98.1% 5.102 0.641

148 98.2% 98.2% 5.715 0.702

149 98.3% 98.3% 5.939 0.665

150 98.3% 98.3% 5.577 0.609

A small difference in accuracy and F1-score between the

Information Gain method (98.7%) and other methods like Chi-

Squared and ANOVA (98.3%) appears significant. Even a

slight increase in accuracy can have a substantial impact on

threat identification. For example, a 0.4% difference in

accuracy may seem minor, but it indicates that a portion of

previously undetected data has been correctly classified.

After testing using a confusion matrix, it was shown that the

XGBoost algorithm correctly predicted 5,465 data points in

category P (Positive) and 5,439 data points in category N

(Negative). However, there were misclassifications where 95 of

P data were incorrectly classified as N, and 116 of N data were

incorrectly classified as P, with a total of 11,115 data points

tested (see Table VI). Error predictions raise serious concerns

about the harmful impact of undetected malware. Nevertheless,

XGBoost's performance remained the best compared to the

other three algorithms.

TABLE VI. CONFUSION MATRIX OF XGBOOST ALGORITHM

 Predicted

 P N ∑

Actual

P 546,560 95 55

N 116 5,439 5555

 ∑ 5581 5534 11115

Table VII presents the performance of the XGBoost

algorithm with various feature selection methods, aimed at

optimizing accuracy and computational efficiency. Without

feature selection, XGBoost achieves an accuracy and F1 score

of 98.7%, with a training time of 7.989 seconds. Using the

Information Gain method, which selects only 147 features, the

model maintains the same accuracy and F1 score of 98.7%, but

significantly reduces training time to 5.068 seconds. This

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024

408

highlights the advantage of Information Gain in improving

computational efficiency without compromising model

performance. In contrast, the Chi-Squared (X²) and ANOVA

methods, which select 148 and 149 features respectively, show

a slight decrease in accuracy and F1 score to 98.3%, with

training times of 5.068 and 5.939 seconds. In terms of

efficiency and performance, Information Gain appears superior,

as it optimally reduces training time without lowering accuracy

or F1.

Table VII. Performance Analysis Result

Algorith

me
SF

Methods

Num

ber

of

Feat

ures

Accura

cy
F1-

Score

Traini

ng

Time

Testi

ng

Time

XGBoost - - 98.7% 98.7% 7.989 0.818

XGBoost

(147)
Informati

on Gain 147 98.7% 98.7% 5.068 0.748

XGBoost

(148) X2 148 98.3% 98.3% 5.068 0.605

XGBoost

(149) ANOVA 149 98.3% 98.3% 5.939 0.665

Stacking

(DT,

SVM,

LR) [6] SBFS 8 97.96% 97.0% - -

Additionally, comparison results from other studies show

that the Stacking method (DT, SVM, LR) with SBFS feature

selection achieves an accuracy of 97.96% with only 8 features,

though with a slightly lower F1 score of 97%. Another

approach, using XGBoost with LOFO, selects 30 features and

achieves an accuracy of 95.6% and an F1 score of 93.9%.

Unfortunately, information about the training and testing times

for these models is unavailable. The illustration of comparison

among algorithms are illustrated in Figure 2.

Fig. 2. Accuracy Comparison between six combinations

In the experiment, XGBoost achieved the highest

performance in malware detection with an accuracy and F1-

score of 98.7%. This performance was maintained using

Information Gain with 147 features, which also resulted in

faster processing times. In addition, there is the issue of false

positives, where benign (safe) applications are mistakenly

classified as malware, which can disrupt users and lower trust

in the detection system. Conversely, false negatives, where

malicious (malware) applications are mistakenly classified as

benign, pose potential security threats to the system. To reduce

these errors, the feature selection technique used must be

capable of choosing the most relevant features that distinguish

malware from safe applications. Due to the high risk of false

positives and false negatives in malware detection, it is not

recommended to sacrifice accuracy and F1 scores for

processing speed. Therefore, using more features, such as the

proposed 147. Recommended over the fewer features suggested

by other researchers to minimize false classifications.

IV. CONCLUSION

This research highlighted the effectiveness of machine

learning, especially the XGBoost algorithm, for malware

detection using the Drebin dataset. The study involved data

collection, pre-processing with Random Under-Sampling

(RUS) to balance the dataset, and applying feature selection

methods like Information Gain, Chi-Squared, and ANOVA.

XGBoost combined with Information Gain and 147 features

achieved the highest accuracy and F1-score of 98.7% and faster

processing speeds, outperforming other methods. The study

underscores the importance of proper feature selection and

balanced data to optimize machine learning performance in

malware detection.

REFERENCES

[1] F. A. Rafrastara, C. Supriyanto, C. Paramita, Y. P. Astuti, and F. Ahmed,

“Performance Improvement of Random Forest Algorithm for Malware

Detection on Imbalanced Dataset using Random Under-Sampling

Method,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 113–118, May 2023,

doi: 10.30591/jpit.v8i2.5207.

[2] Dr. Y. Perwej, S. Qamar Abbas, J. Pratap Dixit, Dr. N. Akhtar, and A.

Kumar Jaiswal, “A Systematic Literature Review on the Cyber Security,”

Int. J. Sci. Res. Manag., vol. 9, no. 12, pp. 669–710, Dec. 2021, doi:

10.18535/ijsrm/v9i12.ec04.

[3] C. Beaman, A. Barkworth, T. D. Akande, S. Hakak, and M. K. Khan,

“Ransomware: Recent advances, analysis, challenges and future research

directions,” Comput. Secur., vol. 111, p. 102490, Dec. 2021, doi:

10.1016/j.cose.2021.102490.

[4] L. Wang et al., “MalRadar: Demystifying Android Malware in the New

Era,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6, no. 2, pp. 1–27, May

2022, doi: 10.1145/3530906.

[5] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, B. A. S. Al-rimy, T. A. E. Eisa,

and A. A. H. Elnour, “Malware Detection Issues, Challenges, and Future

Directions: A Survey,” Appl. Sci., vol. 12, no. 17, p. 8482, Aug. 2022,

doi: 10.3390/app12178482.

[6] Md. S. Rana and A. H. Sung, “Evaluation of Advanced Ensemble

Learning Techniques for Android Malware Detection,” Vietnam J.

Comput. Sci., vol. 07, no. 02, pp. 145–159, May 2020, doi:

10.1142/S2196888820500086.

[7] S. A. Roseline and S. Geetha, “Android Malware Detection and

Classification using LOFO Feature Selection and Tree-based Models,” J.

Phys. Conf. Ser., vol. 1911, no. 1, p. 012031, May 2021, doi:

https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 13, Nomor 03, PP 403-409

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v13i3.2294, Copyright ©2024

Submitted : October 9, 2024, Revised : November 6, 2024, Accepted : November 12, 2024, Published : November 22, 2024

409

10.1088/1742-6596/1911/1/012031.

[8] Y. Yin et al., “IGRF-RFE: a hybrid feature selection method for MLP-

based network intrusion detection on UNSW-NB15 dataset,” J. Big Data,

vol. 10, no. 1, p. 15, Feb. 2023, doi: 10.1186/s40537-023-00694-8.

[9] R. Sihwail, K. Omar, and K. Akram Zainol Ariffin, “An Effective

Memory Analysis for Malware Detection and Classification,” Comput.

Mater. Contin., vol. 67, no. 2, pp. 2301–2320, 2021, doi:

10.32604/cmc.2021.014510.

[10] A. G. Baydin et al., “Toward Machine Learning Optimization of

Experimental Design,” Nucl. Phys. News, vol. 31, no. 1, pp. 25–28, Jan.

2021, doi: 10.1080/10619127.2021.1881364.

[11] V. Çetin and O. Yıldız, “A comprehensive review on data preprocessing

techniques in data analysis,” Pamukkale Univ. J. Eng. Sci., vol. 28, no. 2,

pp. 299–312, 2022, doi: 10.5505/pajes.2021.62687.

[12] K. Hwang, W. Kang, and Y. Jung, “Application of the class-balancing

strategies with bootstrapping for fitting logistic regression models for

post-fire tree mortality in South Korea,” Environ. Ecol. Stat., vol. 30, no.

3, pp. 575–598, Sep. 2023, doi: 10.1007/s10651-023-00573-8.

[13] Z. Abedjan et al., “Detecting data errors: where are we and what needs to

be done?,” Proc. VLDB Endow., vol. 9, no. 12, pp. 993–1004, Aug. 2016,

doi: 10.14778/2994509.2994518.

[14] STMIK Lombok, S. Saikin, S. Fadli, STMIK Lombok, M. Ashari, and

STMIK Lombok, “Optimization of Support Vector Machine Method

Using Feature Selection to Improve Classification Results,” JISAJurnal

Inform. Dan Sains, vol. 4, no. 1, pp. 22–27, Jun. 2021, doi:

10.31326/jisa.v4i1.881.

[15] M. Al-Omari and Q. A. Al-Haija, “Towards Robust IDSs: An Integrated

Approach of Hybrid Feature Selection and Machine Learning,” J.

Internet Serv. Inf. Secur., vol. 14, no. 3, pp. 47–67, Aug. 2024, doi:

10.58346/JISIS.2024.I2.004.

[16] S. Tangirala, “Evaluating the Impact of GINI Index and Information Gain

on Classification using Decision Tree Classifier Algorithm*,” Int. J. Adv.

Comput. Sci. Appl., vol. 11, no. 2, 2020, doi:

10.14569/IJACSA.2020.0110277.

[17] N. Wijaya, “Evaluation of Naïve Bayes and Chi-Square performance for

Classification of Occupancy House,” Int. J. Inform. Comput., vol. 1, no.

2, p. 46, Feb. 2020, doi: 10.35842/ijicom.v1i2.20.

[18] K. Dissanayake and M. G. Md Johar, “Comparative Study on Heart

Disease Prediction Using Feature Selection Techniques on Classification

Algorithms,” Appl. Comput. Intell. Soft Comput., vol. 2021, pp. 1–17,

Nov. 2021, doi: 10.1155/2021/5581806.

[19] U. Moorthy and U. D. Gandhi, “A novel optimal feature selection

technique for medical data classification using ANOVA based whale

optimization,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 3, pp.

3527–3538, Mar. 2021, doi: 10.1007/s12652-020-02592-w.

[20] S. Chehreh Chelgani, H. Nasiri, and A. Tohry, “Modeling of particle sizes

for industrial HPGR products by a unique explainable AI tool- A

‘Conscious Lab’ development,” Adv. Powder Technol., vol. 32, no. 11,

pp. 4141–4148, Nov. 2021, doi: 10.1016/j.apt.2021.09.020.

[21] O. Uludağ and A. Gürsoy, “On the Financial Situation Analysis with

KNN and Naive Bayes Classification Algorithms,” Iğdır Üniversitesi Fen

Bilim. Enstitüsü Derg., vol. 10, no. 4, pp. 2881–2888, Dec. 2020, doi:

10.21597/jist.703004.

[22] Z. Lubis, P. Sihombing, and H. Mawengkang, “Optimization of K Value

at the K-NN algorithm in clustering using the expectation maximization

algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, p. 012133,

Jan. 2020, doi: 10.1088/1757-899X/725/1/012133.

[23] “Prediction of Heart Disease Using Feature Selection and Random Forest

Ensemble Method,” Int. J. Pharm. Res., vol. 12, no. 04, Jun. 2020, doi:

10.31838/ijpr/2020.12.04.013.

[24] F. Mohr and J. N. Van Rijn, “Fast and Informative Model Selection Using

Learning Curve Cross-Validation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 45, no. 8, pp. 9669–9680, Aug. 2023, doi:

10.1109/TPAMI.2023.3251957.

[25] S. Farahdiba, D. Kartini, R. A. Nugroho, R. Herteno, and T. H. Saragih,

“Backward Elimination for Feature Selection on Breast Cancer

Classification Using Logistic Regression and Support Vector Machine

Algorithms,” IJCCS Indones. J. Comput. Cybern. Syst., vol. 17, no. 4, p.

429, Oct. 2023, doi: 10.22146/ijccs.88926.

https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL
https://www.zotero.org/google-docs/?VLXuzL

