
Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 01, PP 81-85

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i1.2315, Copyright ©2025
Submitted : January 11, 2025, Revised : January 23, 2025, Accepted : January 26, 2025, Published : January 31, 2025

81

Comparative Analysis of RESTful, GraphQL, and

gRPC APIs: Perfomance Insight from Load and

Stress Testing

Steven Chandra[1]*, Ahmad Farisi[2]

Faculty of Computer Science and Engineering [1], [2]

Universitas Multi Data Palembang

Palembang, Indonesia

stevenchandrafei@mhs.mdp.ac.id[1], ahmadfarisi@mdp.ac.id [2]

Backend constitutes a critical component of digital

infrastructure, responsible for processing business logic,

managing data, and facilitating communication between software

systems. APIs serve as the interface that enables software

interaction and plays a pivotal role in backend operations. This

study investigates the performance of three API architectures:

RESTful, GraphQL, and gRPC. The experimental approach

involves the implementation of Load Testing and Stress Testing to

assess the performance of these architectures. The experiment

utilizes a dedicated server and client hardware to simulate real-

world conditions, with parameters such as CPU usage, memory

usage, response time, load time, latency, success rate, and failure

rate evaluated using a dataset comprising 1,000 rows of student-

related records. Result show that RESTful achieves the highest

total request but exhibit greater resource consumption and a

higher failure rate. GraphQL demonstrated better CPU and

memory efficiency with strong stability, though it has higher

latency and slower response times. gRPC strikes a balance with a

moderate latency and resource usage, albeit with slightly higher

memory consumption under stress. By presenting a

comprehensive analysis of each API architecture, this study

contributes a comprehensive performance analysis under

practical testing scenarios giving developers and system architect

with data-driven guidance for selecting API architecture to their

application needs. RESTful is well suited for high-throughput

scenarios with less critical operations, GraphQL excels in resource

efficiency and stability, and gRPC offers balanced performance

across diverse workloads.

Keywords— API Architecture, gRPC, GraphQL, Restful, Load

Testing, Stress Testing

I. INTRODUCTION

One of the most critical elements in digital infrastructure is
the backend. The backend is a system component that works
behind the scenes, focusing on business logic processing, data
management, and is responsible for managing servers and
databases [1], [2]. An efficient and reliable backend is essential
to support complex operations, such as data processing and real-
time updates, especially for applications that handle large
volumes of information or need to respond directly to user
interactions [3]. In its operations, the backend is supported by
APIs that function as interfaces enabling two software
components to communicate with each other.

Application Programming Interface (API) is an interface
comprising a set of instructions organized in a library [4].
According to [5], an API is code that connects one application
to another, providing all the necessary permissions for two
software programs to communicate. APIs allow various
systems, whether desktop or web, to interact and exchange data
with servers or databases without requiring an additional
backend, thus simplifying application integration and
development. Additionally, API architecture is a critical aspect
in determining how an API is organized and implemented.

In recent years, several API architectures have been
developed to meet the needs of applications and developers in
various scenarios, such as REST, GraphQL, and gRPC. REST
(Representational State Transfer) is an architectural style for
distributed systems that separates the interface on the client side
and business logic on the server side to achieve anarchic
scalability in line with internet growth [6]. GraphQL, developed
by Facebook in 2012 and publicly released in 2015, is a
dynamic single-endpoint query language for interacting with
APIs [7]. gRPC is an open-source Remote Procedural Call
(RPC) framework developed by Google [8].

With the growing demand for applications to handle user
requests and large data volumes quickly and responsively, it is
crucial for developers to choose the right API architecture
according to application requirements. Each API architecture
has its functions and use cases that influence application
performance. Several previous studies have compared the
performance and effectiveness of API architectures in various
scenarios, such as the study Evaluation of Microservices
Communication while Decomposing Monoliths [9], which
focused on evaluating microservices technologies like HTTP
REST, RabbitMQ, Kafka, gRPC, and GraphQL. This study
used criteria such as latency, throughput, message size, and
memory consumption to test the performance of these
technologies. The results showed that each technology has its
strengths and weaknesses, such as HTTP REST being simpler
and more efficient for direct communication needs, while
RabbitMQ and Kafka, which use message brokers for
asynchronous communication, are better suited for
architectures requiring high availability and loose coupling
between services. However, this study had limitations in terms
of parameter scope, device types, testing tools, programming

mailto:stevenchandrafei@mhs.mdp.ac.id
mailto:ahmadfarisi@mdp.ac.id

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 01, PP 81-85

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i1.2315, Copyright ©2025
Submitted : January 11, 2025, Revised : January 23, 2025, Accepted : January 26, 2025, Published : January 31, 2025

82

languages, and the complexity of the data used.

Another relevant study, Implementation Comparison of
GraphQL and REST API Methods on Node.js Technology by
[10], compared two commonly used API architectures in
application development: REST API and GraphQL on Node.js.
GraphQL was found to be more flexible and efficient than
REST API as it allows clients to customize the data they need
to display. This study compared the performance of the two API
architectures using parameters such as response time and
scalability. However, the testing in this study had some
shortcomings, including limited testing parameters, the use of
simulated data that did not represent real-world complexities,
and a lack of repeated testing to ensure consistency of results.

Another study, Analysis of the Effectiveness Comparison
Between RESTful and gRPC Architectures in Web Service
Implementation [6], used parameters such as response time,
response size, CPU usage, throughput, and load time. The study
indicated that gRPC has more stable and faster response times
as data volume increases compared to RESTful. It also stated
that gRPC has lower CPU usage and response sizes compared
to RESTful.

Previous studies often focus on limited research parameters,
use of simulated data does not represent real-world complexity,
and unequal comparison such as [6], [9], [10] [11], and [12]
making it difficult to draw definite conclusions for real-world
applications. To addresses these gaps, this study aims to
comprehensively comparing RESTful, GraphQL, and gRPC in
Load Testing and Stress Testing scenario by using seven
parameters such as CPU usage, response time, latency, memory
usage, loading time, success rate, and failure rate. These seven
parameters overlap with those from previous studies which
typically examines only two or three parameters, thus enabling
a more thorough and realistic evaluation of API architectures.

II. RESEARCH METHODS

This study uses quantitative True-Experimental to compare

the performance between three API architectures, namely

RESTful, GraphQL, and gRPC. This method was chosen

because it allows full control with research variables and

ensures high internal validity in performance testing. This study

aims to analyze the performance of RESTful, GraphQL, and

gRPC API architectures.

A. Research Flow

The flow of the research experiment can be seen in Figure 1
below.

Fig. 1. Research Flow

The experiment begins with preparing the necessary
hardware. Afterward, the backend application is configured
with required settings. The test script is then executed to start
the simulation and data collection process. First, Glances which
is be used for monitoring resource usage is started. After a 20-
second dela, the backend application is launched, followed by
another 10-second delay before starting the K6 simulation
script. The simulations are carried out until completion, with a
duration of 6 minutes for Load Testing and 23 minutes for
Stress Testing. Once the simulation is finished there is a 10-
second delay before shutting down the backend application,
followed by a 20-second delay to stop the resource monitoring.
The results of the test and monitoring are stored in files
glances.csv for resource monitoring logs and k6.txt for load test
result logs generated by K6. This data is then analyzed to
project test results and draw conclusions regarding system
performance. The experimentation process is considered
complete once all tests are finished and conclusions are drawn
based on the collected data.

B. Research Scope

This research uses Load Testing and Stress Testing to

compare the performance between three API architectures

namely RESTful, GraphQL, and gRPC. This method was

chosen because it allows full control with the research variables

and ensures high internal validity in performance testing such

as CPU usage, response time, latency, memory usage, load

time, success rate, and failure rate. data used for testing consists

of student records joined with tables for students, accounts,

institutions, and study programs, totaling 1,000 rows of data.

This choice of 1,000 rows of data balances complexity and

resource constraints, providing a manageable sample that

reveals key performance behaviors without overwhelming the

test environment. It also provided a solid baseline for assessing

how each API architecture handle typical loads before scaling

up to a larger dataset if needed. By maintaining a controlled

dataset size this research can focus on the architectural

differences on performance, ensuring that trends remain

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 01, PP 81-85

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i1.2315, Copyright ©2025
Submitted : January 11, 2025, Revised : January 23, 2025, Accepted : January 26, 2025, Published : January 31, 2025

83

attributable to the API design rather than external factors

introduced by excessive data volumes. The evaluation are

conducted by using two dedicated hardware to act as server and

client for testing to simulate a real world scenario, the hardware

specification can be seen in Table I.

TABLE I. SPESIFICATION TABLE

Spesification
Hardware

Server Client

CPU Intel Core i7-7700HQ AMD Ryzen 5 7535HS

RAM 20 GB DDR4 16 GB DDR5

Operating

System

Ubuntu Server 24.04.1

LTS
Windows 11 23H2

III. RESULT AND DISCUSSION

The following experimental results that have been carried

out can be seen in the following 3.1 and 3.2.

3. 1. Load Test

Fig. 2. Load Testing Results – Total Comparison

In Figure 2, the results of Load Testing total requests show

that Restful architecture has the largest total requests compared

to GraphQL and gRPC during the same testing period.

However, Restful has a higher request failure rate than the other

two architectures. GraphQL processes fewer requests than

Restful, while gRPC performance is close to Restful with no

failed requests like Restful.

Fig. 3. Load Testing Results – CPU Usage

In Figure 3, the results of Load Testing CPU usage show

that Restful uses higher CPU resources than other architectures.

GraphQL shows a lower and stable CPU usage with a range of

15%. While gRPC has lower CPU usage than GraphQL and

Restful it has some spikes in CPU usage especially in the few

seconds before the test ends, this may possibly due to protocol

buffer encoding/decoding and connection handling toward the

end of the test.

Fig. 4. Load Testing Results – Memory Usage

In Figure 4, the simulated Load Testing results of memory

usage show GraphQL has lower memory usage at 17%. While

Restful and gRPC have identical memory usage at around 20%.

This shows GraphQL is more efficient in memory usage than

Restful and gRPC.

Fig. 5. Load Testing Results – Load Time Comparison

In Figure 5, shows a comparison of the average load time of

the API architectures during Load Testing. GraphQL has the

highest average load time at around 2.8 seconds, followed by

gRPC with an average of around 2 seconds. While Restful has

the lowest average load time, which is 1.4 seconds. These

results show that Restful tends to have a faster load time

response than GraphQL and gRPC.

Fig. 6. Load Testing Results – Response Time Comparison

In Figure 6, the results of the average response time in Load

Testing show a similar pattern to the average load time.

GraphQL stands out with an average response time of 2.8

seconds, while gRPC has an average response time of 1.7

seconds. Restful shows the lowest response time of under 1.6

seconds compared to the other two architectures.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 01, PP 81-85

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i1.2315, Copyright ©2025
Submitted : January 11, 2025, Revised : January 23, 2025, Accepted : January 26, 2025, Published : January 31, 2025

84

3. 2. Stress Test

Fig. 7. Load Testing Results – Latency Comparison

In Figure 7, shows the average latency results on Load

Testing. The graph shows that GraphQL shows the highest

latency by reaching 2.85 seconds followed by Restful with a

latency of about 1.5 seconds. Meanwhile, gRPC latency is

written as 0 because it cannot be measured using the k6 testing

tool.

Fig. 8. Load Testing Results – Total Comparison

In Figure 8, the total request Stress Testing results show

Restful architecture has higher performance with 500,000 total

requests, but has a low success rate at 20%. gRPC also follows

a similar pattern with 267,000 total requests with 37% success

rate. In contrast, GraphQL showed higher total requests than

gRPC, having a 100% success rate out of 287,000 requests.

To facilitate easier comparison, Table II summarize key

perfomance metrics for RESTful, GraphQL, and gRPC under

Load Testing.

TABLE II. LOAD TEST PERFOMANCE SUMMARY

Metric RESTful GraphQL gRPC

Request Processed 44,976 23,055 32,668

Succes Rate 76.64% 100% 100%

Failure Rate 23.36% 0% 0%

Avg CPU Usage Highest Moderate
Lowest Average,

occasional spike

Memory Usage ~20% 17% ~20%

Load Time 1,47ss 2,87s 2,02s

Response Time 1,47s 2,87s 1,77s

Latency 1,46s 2,85s Not measured by K6

Fig. 9. Stress Testing Results – CPU Usage

In Figure 9, Stress Testing CPU usage also shows a similar

trend to Load Testing. Restful tends to use higher CPU than

GraphQL and gRPC. While GraphQL has relatively lower CPU

usage than Restful. gRPC shows lower CPU usage than the

other two architectures, with some spikes in CPU usage at some

periods this is especially noticeable in the moments before the

test is completed.

Fig. 10. Stress Testing Results – Memory Usage

In Figure 10, shows the results of Stress Testing memory

usage shows a different pattern compared to the previous Load

Testing. gRPC shows higher memory usage than Restful and

GraphQL memory usage which tends to be stable and almost

the same. This indicates that gRPC utilizes more memory than

Restful and GraphQL in handling stress testing conditions.

Fig. 11. Stress Testing Results – Load Time Comparison

In Figure 11, shows the average load time results for

Restful, GraphQL, and gRPC. Restful has the lowest average

load time at around 1.5 seconds. While GraphQL and gRPC

show high average load times around 3 seconds, with gRPC

having the highest load time of 3.14 seconds.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 01, PP 81-85

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i1.2315, Copyright ©2025
Submitted : January 11, 2025, Revised : January 23, 2025, Accepted : January 26, 2025, Published : January 31, 2025

85

Fig. 12. Stress Testing Results – Response Time Comparison

In Figure 12, shows the results of the average response time

during stress testing. Restful has the lowest response time at 1.6

seconds, while GraphQL has the highest response time at 2.9

seconds. gRPC has an intermediate response time of 2.3

seconds.

Fig. 13. Stress Testing Results – Latency Comparison

In Figure 13, shows the average latency results of Restful,

GraphQL, and gRPC during Stress Testing. The test results are

consistent with the Load Testing test, where GraphQL shows

the highest average latency at 2.9 seconds while Restful shows

an average latency of 1.6 seconds. Meanwhile, gRPC latency

could not be measured by the k6 testing tool.

To facilitate easier comparison, Table III summarize key

perfomance metrics for RESTful, GraphQL, and gRPC under

Stress Testing.

TABLE III. STRESS TEST PERFOMANCE SUMMARY

Metric RESTful GraphQL gRPC

Request Processed 501,460 287,603 267,594

Succes Rate 80.21% 100% 37.27%

Failure Rate 19.79% 0% 62.73%

Avg CPU Usage Highest Moderate
Lowest Average,

occasional spike

Memory Usage ~20% 17% ~20%

Load Time 1,67ss 2,92s 3,14s

Response Time 1,67s 2,92s 2,35s

Latency 1,67s 2,91s Not measured by K6

IV. CONCLUSION

The research result of both types of tests shows consistent

results, Restful architecture shows the ability to execute more

requests in the same period of time, but the success rate is lower

than GraphQL and gRPC. GraphQL shows better CPU and

memory utilization efficiency and is stable in both tests, while

gRPC offers a balance between performance and resources,

although under sustained stress conditions gRPC memory

utilization is higher than other architectures. It is important to

note however that these experiments arise from limited a

relatively limited dataset (1,000 rows) and a specific hardware

configuration, which could affect generalizability to real-world

applications with larger databases or different infrastructure.

Future research and experiment therefore could investigate this

API architecture with more substantial datasets, potentially in

tens of thousands of records, and explore variations in

programming language and API architectures. Additionally

future research could integrate more comprehensive gRPC

monitoring tools, detailed time-series monitoring, and granular

profiling to pinpoint the exact cause of gRPC resource spike.

REFERENCES

[1] D. A. Hutomo Putra, E. Darwiyanto, and R. Nurtantyana, “Development

of Backend Admin Dashboard for Business Project Monitoring using

Scrum Method,” Indonesia Journal On Computing (Indo-JC), vol. 9, no.

2, pp. 118–133, 2024, doi: 10.34818/indojc.2024.9.2.969.

[2] Humdiana and Julieca, “Implementation of Full Stack Web Development

for Data Admin on Social Media Buzzbuddies,” International Journal of

Social Science (IJSS), vol. 2, no. 2, pp. 1535–1544, Aug. 2022, doi:

10.53625/ijss.v2i2.3093.

[3] M. J. Jamshed o’g’li, “The Significance of Backend Development in

Modern Web Applications,” International Journal of Scientific

Researchers, vol. 8, no. 1, pp. 737–741, 2024.

[4] N. K. Dwi Sabrina, D. Pramana, and T. M. Kusuma, “Implementation of

Golang and ReactJS in the COVID-19 Vaccination Reservation System,”

ADI Journal on Recent Innovation (AJRI), vol. 5, no. 1, pp. 1–12, Feb.

2023, doi: 10.34306/ajri.v5i1.877.

[5] A. F. Rochim, T. N. Wijaya, and D. Eridani, “A Citation Data Collector

Tool of Author’s Profiles in Scopus Based on Web and Application

Programming Interface (API),” IOP Conf Ser Mater Sci Eng, vol. 1077,

no. 1, p. 012017, Feb. 2021, doi: 10.1088/1757-899x/1077/1/012017.

[6] M. I. Yanuardi, Aminudin, and M. Faiqurahman, “Analisis Perbandingan

Efektivitas Arsitektur RESTful dan Arsitektur gRPC pada Implementasi

Web Service,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol.

10, no. 2, pp. 333–341, Aug. 2024.

[7] S. Guha and S. Majumder, “A Comparative Study between Graph-QL &

Restful Services in API Management of Stateless Architectures,”

International Journal on Web Service Computing, vol. 11, no. 2, pp. 1–

16, Jun. 2020, doi: 10.5121/ijwsc.2020.11201.

[8] N. Jagnik, “Highly Performant Python Services using gRPC and

AsyncIO,” Journal of Scientific and Engineering Research, vol. 8, no. 1,

pp. 225–229, 2021, [Online]. Available: www.jsaer.com

[9] J. Kazanavičius and D. Mažeika, “Evaluation Of Microservice

Communication While Decomposing Monoliths,” Computing and

Informatics, vol. 42, pp. 1–36, 2023, doi: 10.31577/cai.

[10] Muntahanah, Y. Darmi, and K. Pinandita, “Implementasi Perbandingan

Metode GraphQL dan REST API pada Teknologi Nodejs,” Journal of

Information Technology and Computer Science (INTECOMS), vol. 7, no.

1, pp. 25–34, 2024.

[11] M. N. Hedelin, “Benchmarking and Performance Analysis of

Communication Protocols: A Comparative Case Study of gRPC, REST,

and SOAP,” KTH Royal Institute of Technology, 2024. Accessed: Nov.

03, 2024. [Online]. Available: https://kth.diva-

portal.org/smash/record.jsf?pid=diva2%3A1887929&dswid=-8588

[12] Goriparthi, “Streamlining API Development: A Comparative Analysis of

GraphQL and RESTful Web Services,” International Journal of Data

Analytics Research and Development, vol. 2, no. 1, pp. 59–71, 2024,

[Online]. Available:

https://iaeme.com/Home/issue/IJDARD?Volume=2&Issue=1

http://www.jsaer.com/

