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Abstract— Heart disease is a medical condition affecting the 

cardiovascular system, disrupting blood circulation and reducing 

cardiac function efficiency, which can lead to severe health 

complications. Early diagnosis of heart disease has become 

increasingly crucial as delayed detection can significantly impact 

patient outcomes and survival rates. While numerous studies have 

explored various approaches for heart disease classification, 

challenges related to data imbalance and improper parameter 

settings remain persistent issues that affect model performance. 

This research evaluated the effectiveness of combining TabNet 

with SMOTE and optuna hyperparameter optimization for heart 

disease classification. We conducted four experimental scenarios 

using a heart disease dataset with 303 instances: baseline TabNet, 

baseline TabNet with SMOTE, TabNet with Optuna, and TabNet 

with both SMOTE and Optuna. Results demonstrated that 

applying SMOTE alone to TabNet decreased model performance 

(accuracy from 85.24% to 77.04%, AUC from 0.89 to 0.83). 

However, when combining SMOTE with Optuna hyperparameter 

optimization, we achieved optimal performance with 90.16% 

accuracy, 93.33% precision, 87.50% recall, 90.32% F1-score, and 

0.93 AUC. This represented a significant improvement over other 

configurations and several previous classification approaches. The 

integration of SMOTE with Optuna optimization  provided an 

effective framework for heart disease classification that 

outperformed traditional methods particularly in discriminative 

capability as evidenced by the superior AUC score. 

Keywords— TabNet, SMOTE, Optuna, Classification, Heart 

Disease 

I. INTRODUCTION 

Global cardiovascular disease (CVD) data from 2015 
recorded 422.7 million cases and 17.92 million deaths. 
Ischemic heart disease emerged as the primary cause of CVD-
related health loss worldwide, with stroke being the second 
most common cause. While high-income and some middle-
income countries showed declining age-standardized CVD 
death rates between 1990-2015, mortality patterns shifted from 
women to men in regions with higher social development 
indices [1]. 

Within the context of heart disease research, Artificial 

Intelligence technology made substantial advances across 
multiple domains, especially in healthcare applications. As a 
specialized field within Artificial Intelligence, machine 
learning showed remarkable utility in various health-related 
cases, particularly in heart disease classification systems. 
Machine learning encompassed the development of computer 
systems that could autonomously improve their capabilities 
through accumulated experience [2]. 

Numerous previous studies extensively explored heart 
disease classification utilizing machine learning and deep 
learning methodologies. Nevertheless, challenges pertaining to 
data imbalance persisted, and the performance of machine 
learning models, especially deep learning architectures, 
depended heavily on appropriate hyperparameter 
configurations, which were difficult to determine manually [3]. 

Research conducted by Yogianto et al. [4] demonstrated the 
implementation of the K-Nearest Neighbors (KNN) algorithm 
in heart disease classification, yielding an accuracy rate of 
64.03%. Masruriyah et al. [5] employed the SMOTE technique 
to address class imbalance issues and conducted a comparative 
analysis of multiple algorithms, producing varying 
classification accuracies: C4.5 achieved 70%, Random Forest 
87%, K-Nearest Neighbors 86%, and Logistic Regression 73%. 

The TabNet architecture, introduced by Arik and Pfister [6], 
offered several theoretical advantages for heart disease 
classification that addressed the limitations of previous 
approaches. Unlike conventional neural networks that 
processed all features simultaneously, TabNet employed 
sequential attention mechanisms that systematically identified 
and prioritized significant features throughout each decision-
making phase. This approach was particularly suited to medical 
diagnostics, where certain features carried varying importance 
for different patient profiles. 

To address the identified research gaps, this study proposed 
a comprehensive approach that combined TabNet with SMOTE 
for handling class imbalance and Optuna for hyperparameter 
optimization. This integration specifically targeted the dual 
challenges that limited previous heart disease classification 
models: data imbalance and suboptimal parameter selection 
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[7],[8],[9]. By systematically evaluating different combinations 
of these techniques, we aimed to determine their individual and 
combined effects on classification performance. 

II. METHODOLOGY 

In this study, we proposed a heart disease classification 
methodology using TabNet model, as illustrated in Figure 1. 
Our approach aimed to evaluate different combinatios of 
techniques using TabNet model, which offered excellent 
interpretability capabilities and efficiently handled tabular data.  

The methodology followed a systematic workflow 
comprising four main stages: heart disease dataset, pre-
processing, model implementation with experimental 
scenarios, and evaluation. We evaluated our approach using 
multiple performance metrics including accuracy, precision, 
recall, F1-score, and area under the ROC curve, and compared 
the results across different experimental scenarios to determine 
the individual and combined effects of SMOTE and Optuna 
Optimization. 

 

Figure 1. Methodology Research 

A. Heart Disease Dataset 

 The dataset used in this research was obtained from a public 
dataset avalilable on Kaggle.com 
(https://www.kaggle.com/datasets/yasserh/heart-disease-
dataset) which is derived from the UCI Heart Disease dataset, a 
widely used benchmark in medical classification research. The 
dataset contained a total of 303 data points comprising 13 
features and 1 target variable. The target variable contained two 
values: 1 indicating the presence of heart disease and 0 
indicating normal condition. The detailed description of each 

feature and data type is presented in Table I. 

TABLE I. DATASET DESCRIPTION 

No 
Feature 

Name 
Description Data Type 

1 Age Patient's age in years  Numeric 

2 Sex Gender of patient (1:male; 

2:Female) 

Categorial 

3 Cp Type of chest pain experienced 

(0: asymptomatic, 1: atypical 

angina, 2 : non-anginal pain, 3: 

typical angina 

Numeric 

4 Tresbps Resting blood pressure in mmHg Numeric 

5 Chol Serum cholesterol level in mg/dl Numeric 

6 Fbs Fasting blood sugar > 120 mg/dl 

(1:true, 0:false) 

Categorial 

7 Restecg Resting electrocardiogram Numeric 

8 Thalach Maximum heart rate achieved Numeric 

9 Exang Exercise-induced angina (1:yes, 

0:no) 

Categorial 

10 Oldpeak ST depression induced by 

exercise relative to rest 

Numeric 

11 Slope Slope of peak exercise ST 

segment 

Numeric 

12 Ca Number of major vessels colored 

by fluoroscopy 

Numeric 

13 Thal Thalassemia type Numeric 

14 Target Heart disease diagnosis (1: heart 

disease, 0:normal) 

Categorial 

 
B. Pre-Processing 

 The preprocessing stage consisted of several steps to ensure 
the quality of data used in this research. Handling duplicate data 
aimed to identify and manage duplicated data entries. This was 
crucial for improving data quality before use and reducing false 
positives in the results [10]. 

 Handling outliers focused on detecting and managing values 
that fall significantly outside the dataset's normal range. These 
anomalous values can substantially bias statistical calculations, 
particularly affecting mean values through under or 
overestimation. Thus, addressing outliers through modification 
or value substitution was essential before conducting data 
analysis [11]. We split the dataset into training and testing sets 
with an 80:20 ratio, which was a standard practice widely 
adopted in previous heart disease classification studies [7], [9], 
[19]. 

C. Experimental Scenarios 

 This research divided the experiments into two main 
scenarios to obtain more comprehensive evaluation results and 
enable more detailed comparative analysis. The details of both 
experimental scenarios are presented in Table II. 

TABLE II. SCENARIOS 

Scenario Method 

I 
TabNet 

TabNet + Optuna 

II 
SMOTE + TabNet 

SMOTE + TabNet + Optuna 

  

 In both scenarios, we implemented two variants of TabNet: 
a baseline TabNet model and an optimized TabNet model using 
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Optuna for hyperparameter tuning. The first scenario used 
standard data splitting, while the second scenario incorporated 
SMOTE to address class imbalance issues. Sampling 
techniques such as SMOTE were only applied to the training 
dataset, not to validation or test sets, ensuring model evaluation 
occurred on data distributions that truly represented the actual 
problem domain, thus avoiding bias in performance assessment 
[12]. 

D. TabNet 

 TabNet is a deep learning algorithm specifically designed to 
process tabular data by combining sequential attention and 
neural networks concepts. TabNet employed sequential 

attention to select feature subsets, enabling efficient learning of 
the most prominent features, and its architecture consisted of 
sequential multi-step processing, where each step contributed 
to the decision based on selected features [6].  

 According to paper [6], TabNet architecture consisted of 
several main components: feature transformer that converted 
input features into more meaningful representations, attentive 
transformer that determined feature masks for each decision 
step, and feature masking that implemented sparse feature 
selection. At each decision step, TabNet used a learnable mask 
to select the most important features with the formula: 

 

 
 

Figure 2. TabNet Architecture[6] 

 

𝑀[𝑖]  · 𝑓 (1) 

Where : 

M[i] = Mask for step i 

f = Input features 

 

This mask was obtained using an attentive transformer with 

the formula: 

 

𝑀[𝑖] = 𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥(𝑃[𝑖 −  1]  ·  ℎ𝑖(𝑎[𝑖 −  1]))  (2) 

 

Where: 

M[i] = mask for step i  

hi = trainable transformation function  

a[i-1] = processed features from the previous step sparsemax = 

normalization that produces sparse weights 

 

P[i] is the prior scale term indicating how much a feature has 

been previously used: 

 

𝑃[𝑖] = ∑(𝛾 − 𝑀[𝑗])

𝑖

𝑗=1

 (3) 

Where: 

P[i] = prior scale at step i  

γ = relaxation parameter (γ ≥ 1)  

M[j] = mask from previous steps  

P[0] = initialized as a 1B×D matrix 

After features are selected, TabNet uses a feature transformer 

to process these features. The output of this process was divided 

into two parts: 

 

[𝑑[𝑖], 𝑎[𝑖]] =  𝑓𝑖(𝑀[𝑖] ·  𝑓) (4) 

Where: 

d[i] = output for the current decision step  

a[i] = output information to be used in the next step  

fi = the feature transformer function  

M[i] = mask for step i  

f = input feature 

 

d[i] was the decision step output and a[i] was the information 

for the next step. To produce the final decision, TabNet 

aggregated the output from all decision steps using the formula: 

 

𝑑𝑜𝑢𝑡 =  ∑ᵢ 𝑅𝑒𝐿𝑈(𝑑[𝑖])   (5) 

Where: 

Dout = final decision output  

ReLU = rectified Linear Unit activation function  

d[i] = output from decision step i  

Σi = summation over all steps 

 

For interpretability, TabNet used an aggregate feature 

importance mask that was calculated by: 

 

𝑀𝑎𝑔𝑔 − 𝑏, 𝑗 =  ∑ᵢ 𝜂𝑏[𝑖]𝑀𝑏, 𝑗[𝑖] / 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (6) 

Where:  

Magg_b,j := Aggregated importance mask  
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nb[i] = Feature importance score at step i  

Mb,j[i] = Mask for batch b and feature j at step i  

Normalization= Normalization factor for value standardization 

 

The contribution score ηb[i] was determined by: 

 

𝜂𝑏[𝑖] =  ∑𝑐 𝑅𝑒𝐿𝑈(𝑑𝑏, 𝑐[𝑖]) (7) 

Where: 

nb[i] = Feature importance score at step i  

Σc = Summation over all classes  

db,c[i] = Decision output for batch b and class c at step i  

ReLU = Rectified Linear Unit activation function 

 

E. Optuna 

Optuna was a hyperparameter optimization framework 

developed by Akiba et al. in 2019. Optuna was designed with a 

"define-by-run" principle that allowed users to dynamically 

construct parameter search spaces, offering efficient 

implementation of search and pruning strategies, a flexible and 

versatile architecture for various purposes, and equipped with 

Tree-structured Parzen Estimators (TPE) in its optimization 

process which was useful for learning from previous 

optimization trials [13]. 

 

Through Optuna optimization, The parameter ranges were 

determined through preliminary experiments. We deliberately 

selected narrower, more focused ranges rather than broader 

exploration to maximize optimization efficiency given 

computational constraints are detailed in Table III. 

 
TABLE III. TABNET OPTIMIZATION PARAMETERS 

Parameter Range Value 

n_d 8 - 32 

n_a 8 – 32 

n_steps 5 – 8 

n_independent 1 - 2 

learning_rate 0.01 – 0.1 

gamma 1.0 – 2.0 

lambda_sparse 0.0001 – 0.01 

 

F. Evaluation 

In this study, the model evaluation was conducted using 

confusion matrix and AUC-ROC curve analysis. confusion 

matrix, as described by [14], was a fundamental evaluation tool 

in machine learning that displayed the relationship between 

predicted and actual classifications. It utilized a two-

dimensional structure where one axis represented the true class 

labels while the other showed the model's predictions. 

 
TABLE IV. CONFUSION MATRIX 

 Actual 

Positive Negative 

Prediction 

Positive 

 
TP FP 

Negative 

 
FN TN 

 

The structure of the binary classification confusion matrix 

implemented in this study consisted of four key components. 

• True Positive (TP) : represented the number of 

correctly classified positive instances. 

• True Negative (TN) : indicated the number of 

correctly classified negative instances.  

• False Positive (FP) : also known as Type I error, 

represented negative instances incorrectly classified as 

positive 

• False Negative (FN) : Type II error, indicated positive 

instances incorrectly classified as negative. 

 

These components and their relationships are illustrated in 

Table IV. From the confusion matrix components, several key 

performance indicators can be calculated to evaluate the 

model's performance, including accuracy, precision, recall, and 

F1-score [15]. These evaluation metrics are calculated using the 

following formulas : 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(TP+TN)

(TP+FP+FN+TN)
      (8) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

(9) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
    (10) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗presisi∗recall

presisi+recall
               (11) 

 

In addition to the confusion matrix, this study also utilized 

the Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC), a popular evaluation metric used to measure 

binary classification performance [16]. AUC-ROC was 

employed to analyze model performance in greater depth, 

particularly in identifying areas where the model struggled to 

separate positive and negative labels, which ultimately helped 

identify the classifier's decision boundary and potential AUC 

improvements. 

 

III. RESULT AND DISCUSSION 

 In this study, we used a heart disease dataset containing 303 
records with 13 features and 1 target variable. The features 
included patient characteristics and medical measurements such 
as age, sex, chest pain type, blood pressure, cholesterol, and 
other cardiac indicators, as shown in Figure 3. These features 
were selected based on their established clinical relevance to 
cardiac health assessment and diagnostic procedures in medical 
literature. The preprocessing phase began with duplicate 
detection, where one duplicate record was identified and 
removed, reducing the dataset to 302 records. This elimination 
of duplicates was an essential step to ensure the integrity of our 
analysis and prevent potential bias in model training and 
evaluation outcomes.
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Figure 3. Heart Disease Dataset 

In the next step, we continued with outlier detection for the 
continuous features, which identified several outliers as shown 
in Figure 4. Considering the small dataset size, these outliers 
were replaced with their respective upper and lower bounds for 
each feature. 

 

Figure 4. Outliers Data 

 After preprocessing, the dataset was duplicated for use in 
two scenarios. The data was split into training and testing sets 
with an 80:20 ratio. The data distribution was shown in Table 
V. For scenario II, SMOTE was applied to the training data to 
achieve balanced class distribution during model training to 
investigate potential performance improvements. 

TABLE V. DISTRIBUTION OF HEART DISEASE DATASET 

Scenario 
Dataset 

Training Testing 

I 241 61 

II 264 61 

 
 The evaluation of TabNet performance on heart disease 
classification was conducted through two scenarios. Each 
scenario examined two model variations: baseline TabNet and 
TabNet with Optuna hyperparameter optimization. For both 
variations, we established initial parameters including a 
patience value of 20 for early stopping when no learning 
improvement was observed, batch and virtual_batch sizes of 32 
to accommodate the small dataset, and n_trials of 20 in Optuna 
for the number of optimization attempts. 
 
 Figure 5 presents the training loss curves for all four 
experimental configurations across both scenarios. Statistical 
analysis was conducted on the final 20 epochs, chosen because 
at this stage all models had surpassed their initial rapid learning 
phase and entered more stable convergence patterns. providing 
a more reliable representation of each model's final learning 
characteristics. This analysis revealed significant differences in 
convergence patterns among the models. 

 

Figure. 5 Training Loss Over Epoch Scenario I and II 

 For Scenario I, the baseline TabNet demonstrated efficient 
early learning with a rapid decrease in training loss from 0.8 to 
0.4 within the first 10 epochs, eventually reaching stable 
convergence around 0.2. When Optuna optimization was 
applied, the model showed higher initial loss (~1.0) but 
stabilized around 0.3 after epoch 60. Statistical comparison 
between these models revealed a significant difference in 
training behavior (t = -9.74, p < 0.0001), with baseline TabNet 
consistently maintaining lower loss values across the final 20 
epochs. The variance analysis showed TabNet+Optuna 
exhibited slightly higher fluctuations (σ² = 0.000863) compared 
to baseline TabNet (σ² = 0.000722), supporting our observation 
that the optimized model explored a more diverse feature space. 

 For Scenario II with SMOTE application, the baseline 
TabNet achieved smoother convergence to approximately 0.15 
by epoch 90. When SMOTE was combined with Optuna 
optimization, the model began with higher initial loss (~1.2) but 
stabilized between 0.3-0.4 after epoch 40. Statistical analysis of 
the final 20 epochs revealed an extremely significant difference 
between these models (t = -15.83, p < 0.0001), indicating 
SMOTE+TabNet consistently maintained lower training loss 
compared to SMOTE+TabNet+Optuna. The variance in 
SMOTE+TabNet+Optuna (σ² = 0.001421) was notably higher 
than SMOTE+TabNet (σ² = 0.000757), suggesting that Optuna 
optimization introduced beneficial regularization effects that 
prevented the model from minimizing training loss too 
aggressively. 

 Cross-scenario comparison revealed significant differences 
between baseline and SMOTE implementations (t = 2.67, p = 
0.015), with SMOTE consistently resulting in lower training 
loss. Similarly, comparison between both Optuna-optimized 
models showed significant differences (t = -5.93, p < 0.0001), 
with SMOTE+TabNet+Optuna maintaining higher training 
loss. These statistical findings provided strong evidence that 
while SMOTE facilitated easier optimization of the loss 
function during training, Optuna's hyperparameter optimization 
introduced effective regularization effects that prevented 
overfitting to synthetic samples, explaining the superior test 
performance observed in subsequent evaluations despite higher 
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training loss. 

 

Figure 6. Confusion Matrix Scenario I and II 

 Figure 6 presents the confusion matrices for all four model 
configurations, providing a detailed view of classification 
performance. In Scenario I, the baseline TabNet correctly 
identified 27 negative cases (true negatives) and 25 positive 
cases (true positives), while misclassifying 2 negative cases as 
positive (false positives) and 7 positive cases as negative (false 
negatives). When Optuna optimization was applied to TabNet 
in Scenario I, the model demonstrated improved performance 
with 26 true negatives and 28 true positives. The optimization 
reduced misclassifications to 3 false positives and 4 false 
negatives. 

 In Scenario II, the application of SMOTE alone to the 
baseline TabNet unexpectedly decreased performance, with the 
model achieving 24 true negatives and 23 true positives, while 
showing increased misclassification rates with 5 false positives 
and 9 false negatives. This performance degradation could be 
attributed to several factors. First, the synthetic samples 
generated by SMOTE might have introduced noise in the 
feature space rather than meaningful patterns, given the 
relatively small original dataset size. Second, the TabNet's 
default parameters might not have been optimal for learning 
from the modified data distribution, causing the model to 
overfit to synthetic patterns that did not generalize well to the 
test set. 

 However, when SMOTE was combined with Optuna 
optimization, the model achieved the best overall performance 
with 27 true negatives and 28 true positives, while reducing 
misclassifications to 2 false positives and 4 false negatives. This 
demonstrated that while SMOTE alone might disrupt the 
original data distribution, Optuna's hyperparameter 
optimization effectively mitigated this issue by adapting the 
model architecture specifically to the characteristics of the 
balanced dataset. 

 

Figure 7. AUC-ROC for Scenario I and II 

 Figure 7 presents the ROC curves for all four model 
configurations, providing insights into their discriminative 
capabilities across different classification thresholds. In 
Scenario I, the baseline TabNet achieved an AUC score of 0.89, 
indicating strong overall classification ability. The Optuna-
optimized version showed improved performance with an AUC 
of 0.92, demonstrated by a curve that rose more sharply at low 
false positive rates and maintained higher true positive rates 
throughout the threshold spectrum.  

 In Scenario II with SMOTE implementation, the baseline 
model showed a decreased performance with an AUC of 0.83, 
further confirming that class balancing alone negatively 
affected the model's discriminative ability. However, when 
combined with Optuna optimization, the model achieved the 
highest AUC of 0.93, characterized by a steep initial rise and 
consistently high true positive rates across different false 
positive rate thresholds.  

TABLE VI. COMPARISON OF TABNET MODEL PERFORMANCE 

Scen

ario 

Metho

d 

Evaluation 

Accuracy Presisi Recall F1-score AUC 

I 

TabNet 

 
85.24% 92.59% 78.12% 84.74% 0,89 

TabNet 

+ 

Optuna 

88.52% 90.32% 87.50% 88.88% 0,92 

II 

SMOT

E + 

TabNet 

77.04% 82.14% 71.87% 76.66% 0,83 

SMOT

E + 

tabnet 

+ 

Optuna 

90.16% 93.33% 87.50% 90.32% 0,93 

  
 The experimental results presented in Table VI show the 
evaluation metrics for all model variations across both 
scenarios. In Scenario I, the baseline TabNet achieved good 
performance with 85.24% accuracy, 92.59% precision, 78.12% 
recall, 84.74% F1-score, and 0.89 AUC. The Optuna-optimized 
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version showed improvement across all metrics, reaching 
88.52% accuracy, 90.32% precision, 87.50% recall, 88.88% 
F1-score, and 0.92 AUC. 
 
 In Scenario II, the SMOTE-enhanced baseline TabNet 
initially showed decreased performance with 77.04% accuracy, 
82.14% prerecision, 71.87% recall, 76.66% F1-score, and 0.83 
AUC. However, when combined with Optuna optimization, the 
model achieved the best overall performance with 90.16% 
accuracy, 93.33% precision, 87.50% recall, 90.32% F1-score, 
and 0.93 AUC. 

 The results demonstrate that while SMOTE alone may 
reduce model performance, its combination with Optuna 
optimization leads to superior results across all evaluation 
metrics. The progression from baseline to optimized models in 
both scenarios highlights the significant impact of proper 
hyperparameter tuning, particularly when implementing class 
balancing techniques. A comparative visualization of these 
performance metrics across all model configurations can be 
seen in Figure 8. The optimal parameter configurations 

determined by Optuna that led to these improvements for both 
scenarios are presented in Table VII. 

 

Figure 8. Comparative Visualization of Model Performance Metrics 

 

TABLE VII. OPTIMIZED PARAMETERS FOR DIFFERENTS SCENARIOS 

Parameter Range Value Scenario I Scenario II 

n_d 8 - 32 21 8 

n_a 8 – 32 15 8 

n_steps 5 – 8 8 8 

n_independent 1 - 2 2 2 

learning_rate 0.01 – 0.1 0.024196550894727036 0.02114274661219965 

gamma 1.0 – 2.0 1.8305314575602554 1.0251532561037215 

lambda_sparse 0.0001 – 0.01 0.0014497065638336094 0.00026367649497584590 

 

TABLE VIII. COMPARATIVE ANALYSIS OF TABNET MODEL PERFORMANCE WITH RELATED RESEARCH 

Author Best Model 
Evaluation 

Accuracy Precision Recall F1-Score AUC 

Hirwono et al. [17] 

 
Naïve Bayes 86.64% 85.07% 89.36% 91.94% - 

Nawawi et al. [18] 

 
Neural Network 84.52% 85.31% 98.85% - 0.60 

Firdaus et al. [19] 

 
MLP 97.50% 97.55% 97.50% 97.48% - 

Baliani et al. [20] 

 
Gradient Boosting 89.50% - - - - 

Ratnasari et al. [21] 

 
Naïve Bayes 84.67% - - - 0.50 

Proposed Method 

 
TabNet 90.16% 93.33% 87.50% 90.32% 0.93 

 

 Compared to previous studies on heart disease classification 
Table VIII, our TabNet model with SMOTE and Optuna 
optimization demonstrated several significant advancements. 
While some previous approaches have achieved comparable 
accuracy, our integrated methodology addresses critical 
limitations in existing methods and offers distinct advantages 
for real-world clinical applications. 

 The Naïve Bayes model implemented by Hirwono et al. [17] 
achieved respectable accuracy (86.64%) but suffered from 
significant limitations in discriminative capability as evidenced 
by its unreported AUC values. Similarly, Ratnasari et al. [21] 

reported a comparable accuracy of 84.67% using Naïve Bayes, 
but their study revealed an extremely low AUC  

 

of only 0.50, effectively equivalent to random guessing in terms 
of ranking capability. These findings highlight a critical 
limitation in many previous studies: the overreliance on     
accuracy as the sole performance metric, which can be 
misleading in medical diagnostics where false negatives carry 
serious consequences. 

 Neural Network approaches, such as that employed by 
Nawawi et al. [18], showed particularly poor discriminative 
ability with an AUC of only 0.60 despite reasonable accuracy 
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(84.52%). This substantial performance gap compared to our 
approach underscores the limitations of conventional neural 
networks when handling tabular medical data without 
appropriate attention mechanisms and hyperparameter 
optimization. The attention mechanism in TabNet provides a 
critical advantage by focusing on the most relevant features for 
each individual case, unlike traditional neural networks which 
process all features equally. Research by Firdaus et al. [19] 
reported high accuracy (97.55%) using MLP, but this result was 
achieved using a 90:10 train-test split ratio, which can 
artificially inflate performance metrics compared to our more 
robust 80:20 split. Their extreme split ratio likely led to overly 
optimistic results with limited test samples, whereas our 
approach with a larger test set provides a more realistic 
assessment of generalization capability. Additionally, their 
study lacked comprehensive evaluation across diverse metrics 
beyond accuracy, particularly AUC, which our research 
demonstrates is crucial for clinical applications 

 The Gradient Boosting approach by Baliani et al. [20] 
achieved 89.5% accuracy using manual parameter tuning with 
fixed incremental values for learning rate and estimators, 
whereas our approach leveraged Optuna's Bayesian 
optimization to systematically explore the parameter space, 
achieving superior performance (90.16% accuracy). This 
difference highlights the advantage of our automated 
optimization strategy over predefined parameter testing, 
enabling discovery of optimal configurations that manual 
experimentation likely missed. 

IV. CONCLUSION 

 The implementation of SMOTE technique alone in the 
context of heart disease classification did not necessarily lead 
to improved model performance. This was evidenced by the 
decrease in accuracy from 85.24% to 77.04% in the baseline 
TabNet implementation. Statistical analysis of the training loss 
patterns (p < 0.0001) revealed that applying SMOTE without 
appropriate parameter adjustments actually caused the model to 
overfit to synthetic samples rather than learning generalizable 
patterns from the data. This phenomenon was particularly 
pronounced in our relatively small dataset, where synthetic 
samples generated by SMOTE failed to adequately capture the 
complexity of real patient data. 

 However, when SMOTE was combined with parameter 
optimization using Optuna, the model achieved its best overall 
performance with 90.16% accuracy, 93.33% precision, 87.50% 
recall, 90.32% F1-score, and an AUC of 0.93. This significant 
improvement across all metrics demonstrated the synergistic 
effect of combining appropriate data balancing techniques with 
hyperparameter optimization, where Optuna effectively 
counteracted potential overfitting by fine-tuning regularization 
parameters. 

The key contributions of this research included: 

• Identification of the potential negative impact of 
SMOTE when applied in isolation  

• Demonstration of Optuna's effectiveness in optimizing 
TabNet parameters  

• Achievement of state-of-the-art discriminative 
capability with an AUC of 0.93, representing a 

substantial improvement over previous approaches 

 These findings have important implications for clinical 
applications, where improved classification accuracy and 
reliability could support earlier and more accurate diagnosis of 
heart disease, potentially improving patient outcomes through 
timely interventions. The sequential attention mechanism of 
TabNet, when properly optimized, provides an interpretable 
model that could help clinicians understand the factors 
contributing to a particular diagnosis. 

 Future research could extend this work by investigating the 
application of different optimization techniques to TabNet 
model, and evaluation on larger datasets to further validate the 
generalizability of our approach. Additionally, exploring the 
interpretability aspects of the optimized TabNet model could 
provide valuable insights for medical practitioners in 
understanding the factors contributing to heart disease 
classification. 
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