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Abstract— This study investigates the use of a Gated Recurrent 

Unit (GRU) model with a four-layer architecture for daily gold price 

closing prediction, motivated by the model's ability to effectively 

capture temporal dependencies in time series data. Gold price 

forecasting is highly challenging due to its volatility and external 

factors, making it an important area of research for investors and 

financial analysts. By systematically optimizing hyperparameters 

through 72 combinations of epochs, batch size, GRU layer units, and 

dropout rates, the study identifies the optimal configuration (100 

epochs, batch size of 16, 256 units, dropout rate 0.1) based on MSE 

performance on validation data. The best model achieved MAE of 

25.76, MSE of 954.97, and RMSE of 30.90, after inverse 

transformation on test data. These results highlight the potential of 

the GRU model in accurately forecasting gold prices, with 

implications for financial decision-making . However, the prediction 

error suggests that further improvements could be made by 

incorporating external factors or exploring advanced model 

architectures.  

Keywords— Gated Recurrent Unit (GRU), Gold Price Prediction, 

Hyperparameter Optimization, Time Series 

I. INTRODUCTION 

Investment activities are an integral part of the modern 
economy, where individuals and institutions allocate capital 
with the aim of generating returns or preserving asset value in 
the future. A variety of asset classes are available to investors, 
ranging from stocks, bonds, real estate, to commodities, each 
with distinct risk profiles and potential returns. Among the 
many investment options available, individuals tend to choose 
investments that offer higher returns [1]. One attractive option 
is gold, which is not only valued as a raw material for jewelry 
and technology, but also widely recognized as a vital 
investment instrument. Gold serves as a store of value (safe 
haven) especially during times of global economic turmoil, as 
well as a hedge against inflation and currency devaluation [2]. 

 Price fluctuations in XAU/USD are driven by factors such 
as changes in currency exchange rates, interest rate policies 
(especially those of central banks like the U.S. Federal 
Reserve), inflation rates, and geopolitical tensions [3]. The 
dynamics of physical gold supply and demand also contribute 
to these fluctuations, making it crucial for investors to 
accurately predict price movements [4]. The complex and 
interrelated nature of these factors makes forecasting gold 

prices a challenging yet valuable task. 

 This study aims to address the challenge of predicting daily 
gold prices by implementing the Gated Recurrent Unit (GRU) 
model, which is well-suited for capturing the temporal 
dependencies in financial time series data. By evaluating 
various hyperparameter configurations, this research seeks to 
improve the accuracy of gold price predictions and provide a 
more reliable tool for investors. 

To support investment decision-making amid gold price 
volatility, various studies have been conducted to develop 
accurate prediction methods. [5]This study compares the 
performance of models based on Recurrent Neural Networks 
(RNN), including LSTM and GRU, in forecasting economic 
and financial data in Indonesia, such as the IHSG, export value, 
and GDP. The results of this study indicate that the GRU model 
performs best overall and is more stable than RNN and LSTM 
on the data. On average, GRU recorded the smallest MAPE 
values on IHSG (Index Harga Saham Gabungan) data 
(0.3695%), export data (7.36%), and GDP data (1.77%). 
However, this study does not specifically focus on gold price 
prediction. The study also suggests increasing the number of 
scenarios with other combinations of hyperparameters and 
using model search techniques [6]. 

Specifically implements and compares GRU, Bi-GRU, 
LSTM, and Bi-LSTM for global gold price prediction. This 
study uses historical gold price data from Yahoo Finance and 
explores various optimization techniques, batch sizes, and time 
steps. The results of this study indicate that the Bi-GRU model 
with Adam optimization, a batch size of 8, and a time step of 20 
provides the best performance for global gold price prediction, 
with an MSE value of 4.1153, an RMSE value of 2.0286, an 
MAE value of 1.5881, and a MAPE value of 0.8857%. 
Although relevant to the topic of gold price prediction using 
GRU and its variations, this study did not use the best 
hyperparameter selection [7]. 

A separate study evaluated the efficacy of various deep 
learning algorithms, including Artificial Neural Network 
(ANN), Convolutional Neural Network (CNN), Recurrent 
Neural Network (RNN), and Long Short-Term Memory 
(LSTM), in predicting gold prices utilizing a dataset sourced 
from Kaggle. The study determined that the CNN model 
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utilizing Adam optimization and the MSE loss function 
exhibited optimal performance in predicting gold prices within 
the used dataset. The CNN model achieved the smallest MAE 
value of 0.004848717761305338, the smallest MSE value of 
4.3451079619612133e-05, and the smallest RMSE value of 
0.006591743291392053. Although comparing RNN and 
LSTM, this study did not explore the performance of GRU in 
depth and recommends the use of a larger and more recent 
dataset as well as exploration of other models such as 
Transformer for further research. 

Based on this literature review, there is a research gap 
focusing on gold price prediction in Indonesia using the GRU 
model. Although the GRU model has shown good performance 
in forecasting economic time series data in Indonesia and global 
gold price prediction, its in-depth application for specific gold 
price prediction in Indonesia with adequate hyperparameter 
exploration still requires further research. Therefore, This study 
seeks to develop a predictive model for gold closing prices 
(XAU/USD) utilizing the Gated Recurrent Unit (GRU) 
architecture, while systematically assessing the effects of 
diverse hyperparameter combinations: epochs (50, 100, 150), 
batch sizes (16, 32, 64), neuron counts (50, 100, 128, 256 units), 
dropout rates (0.1, 0.0), and a learning rate of 0.0001 on model 
performance. The performance of each combination will be 
measured and compared using the Mean Absolute Error 
(MAE), Mean Squared Error (MSE), and Root Mean Squared 
Error (RMSE) metrics on the test data to identify the most 
optimal configuration. 

II. METHODOLOGY 

The research process was carried out in several stages, 

starting with the collection of gold price data (XAU/USD) from 

TradingView, a popular financial data platform. Preprocessing 

steps were then performed, including normalization using the 

Min-Max Scaler to scale the data within the [0,1] range. A time 

series sequence was created with a timestep of 30, representing 

the past 30 days of price data for each prediction. Next, the 

dataset was split into training (80%) and testing (20%) sets, 

ensuring that the data followed a temporal order without 

shuffling, to maintain the integrity of time series forecasting. 

The GRU model with a four-layer hidden architecture was then 

applied, utilizing the Adam optimizer and MSE loss function. 

Various hyperparameter values were tested, including epochs 

(50, 100, 150), batch sizes (16, 32, 64), number of neurons (50, 

100, 128, 256 units), dropout (0.1, 0.0), and learning rate 

(0.0001). 

The choice of these hyperparameters was based on 

preliminary experiments and existing literature that indicated 

these values would provide a good balance between training 

time and model performance. For instance, the choice of batch 

size and number of epochs was influenced by previous research 

in financial time series forecasting, which suggested these 

values as optimal for minimizing overfitting and improving 

generalization. Despite the benefits of automated 

hyperparameter optimization methods like Grid Search or 

Random Search, they were not employed in this study due to 

time constraints and computational resource limitations. 

Instead, a more manual approach was taken to test a broad range 

of hyperparameters, ensuring that the model’s performance 

could be thoroughly evaluated with reasonable computational 

effort. 

Validation during training was carried out using a 20% split 

of the training data to monitor model performance and prevent 

overfitting through Early Stopping. Final evaluation was 

conducted on the test dataset, using the MAE, MSE, and RMSE 

metrics to compare the performance of different 

hyperparameter configurations. This research method is 

presented in the form of a flowchart in Fig. 1. 

 

 
Fig  1. Research Method 

A. Dataset 

 This analysis utilizes historical data on the price of gold 
traded against the US dollar (XAU/USD). This data was 
obtained from the TradingView platform 
(www.tradingview.com), a popular online platform that 
provides real-time charting and financial market analysis tools. 
The data includes time, opening price, high price, low price, and 
closing price. The data used spans from November 2006 to 
March 2025, with some of the data presented in Table 1. 
Utilizing large and diverse datasets is crucial in financial 
analysis as they enable more accurate predictions and better 
generalization of models. Integrating deep learning and big data 
algorithms significantly enhances the accuracy of financial risk 
behavior predictions, highlighting the importance of extensive 
datasets in financial forecasting [8]. 
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TABLE I.  XAU/USD DATASET FROM 2006 TO 2025 

Time Open High Low Close 

2006-09-21 

21:00:00 

584.2 592.7 584.2 589.65 

2006-09-24 

21:00:00 

589.65 592 582.3 590.7 

2006-09-25 

21:00:00 

590.7 594 586.1 591.8 

2006-09-26 

21:00:00 

591.8 603.65 589.8 603 

2006-09-27 

21:00:00 

603 607.1 600.4 601.1 

2006-09-28 

21:00:00 

601.1 603.8 594.4 598.25 

2006-10-01 

21:00:00 

598.25 604.15 594.75 596.7 

2006-10-02 

21:00:00 

596.7 598.5 573.8 574.8 

… … … … … 

2025-03-02 

22:00:00 

2873.14 2895.21 2859 2892.985 

2025-03-03 

22:00:00 

2892.7 2927.91 2881.98 2917.85 

2025-03-04 

22:00:00 

2917.885 2929.98 2894.35 2919.265 

2025-03-05 

22:00:00 

2918.685 2926.72 2891.15 2911.1 

2025-03-06 

22:00:00 

2912.935 2930.54 2896.91 2909.55 

2025-03-09 

21:00:00 

2912.41 2918.385 2896.71 2904.68 

 

B. Data Normalization 

Data normalization is an important technique in machine 
learning and time series analysis, especially when using 
gradient-based models such as GRU. Normalization aims to 
minimize errors, ensure data is scaled and easy to process in 
models. In this case study, we use the min-max scaling 
technique with an interval of [0,1]. The formula for 
normalization is shown in equation (1). Reference [9] data 
normalization techniques, such as Min-Max scaling and Z-
normalization, have been explored to enhance model 
performance. The results of normalization with min-max scaler 
are shown in Fig. 2. 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑋 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑖𝑛 −  𝑋𝑚𝑖𝑛
 (1) 

 

Explanation : 
𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = value of the data after scaling. 
𝑋 = original value of the data. 
𝑋𝑚𝑖𝑛 = minimum value of the feature in the dataset. 
𝑋𝑚𝑎𝑥 = maximum value of the feature in the dataset. 
 
The results of data normalization are shown in the following 
Fig 2: 

 
Fig  2. Data after data normalization process 

C. Data Splitting  

 Maintaining temporal order during data splitting is crucial 
for time series forecasting models to prevent data leakage and 
ensure realistic performance evaluation, as highlighted [8]. The 
constructed dataset (x and y) is partitioned into training and 
testing subsets, with an allocation of 80% for training and 20% 
for testing. The division is performed sequentially 
(shuffle=False) to maintain the time sequence, in accordance 
with the characteristics of time series data. The data division 
visualization is presented in Fig. 3. 

 

Fig  3. Training and Testing Data Split 

D. GRU Model 

The Gated Recurrent Unit (GRU) is a Recurrent Neural 

Network (RNN) architecture developed to mitigate the 

vanishing gradient issue commonly faced by conventional 

RNNs, particularly when processing sequential data with long-

term dependencies [6].GRU can be considered an evolution of 

simpler and more efficient RNNs, with the ability to learn and 

retain information from data sequences over longer periods. 

The primary function of GRU in neural networks is to process 

sequential data by retaining relevant information from previous 

time steps while filtering out irrelevant or outdated information. 

This allows the network to understand the temporal context in 

the data and make more accurate predictions. 

The GRU structure simplifies the recurrent unit by 

introducing two main gates, the update gate and the reset gate. 

The Update gate (𝑧𝑡) controls the proportion of information 

from the previous hidden state (ℎ𝑡−1) that is passed on to the 

current hidden state (ℎ𝑡). Mathematically, the update gate is 
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calculated using the following formula: 

𝑧𝑡 =  𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)  (2) 

Explanation: 

𝜎 = sigmoid function 

𝑥𝑡 = current input 

ℎ𝑡−1 = previous hidden state 

𝑊𝑧 and 𝑈𝑧 = weight matrices 

𝑏𝑧 = bias for the update gate. 

 

The reset gate (𝑟𝑡) determines how much of the previous 

hidden state is ignored in the calculation of the current hidden 

state, calculated using the formula: 

𝑟𝑡 =  𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)  (3) 

Explanation: 

𝜎 = sigmoid function 

𝑥𝑡 = current input 

ℎ𝑡−1 = previous hidden state 

𝑊𝑟 and 𝑈𝑟 = weight matrices 

𝑏𝑟 = bias for the reset gate. 

 

The internal architecture of the GRU entails computing the 

candidate hidden state (ℎ̃𝑡), which is derived from the current 

input and the preceding hidden state, adjusted by the reset gate. 

The candidate concealed state is calculated using the 

subsequent formula: 

ℎ̃𝑡 =  𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⨀ ℎ𝑡−1) + 𝑏ℎ)  (4) 

Explanation: 

𝑡𝑎𝑛ℎ = hyperbolic tangent function 

𝑟𝑡 = reset gate 

ℎ𝑡−1 = previous hidden state 

𝑊ℎ  and 𝑈ℎ = weight matrices 

𝑏ℎ = bias for the candidate hidden state 

⨀ = denotes element-wise multiplication. 

An illustration of GRU model hidden state computation is 

shown in Fig. 4. 

 
Fig  4. GRU Model Hidden State Computation 

At this stage, the optimal GRU model architecture is built. 

The model is configured as a sequential model, meaning layers 

are added sequentially. The prepared GRU model is trained 

using the training data. The model specifications are as follows: 

1. Optimizer: Adam 

2. Hidden layers: 4 

3. Number of Neurons: 50, 100, 128, 256 units 

4. Timestep: 30 

5. Epochs: 50, 100, 150 (with early stopping) 

6. Batch Size: 16, 32, 64 

7. Dropout: 0.1, 0.0 

8. Learning rate: 0.0001 

 

E. Testing Process 

The testing process is carried out after the computation 

process on the training data. The trained model is then 

implemented using the testing data to obtain the prediction 

results. 

 

F. Output Visualization 

The visualization of the GRU model's prediction results is 

performed to compare the actual gold price movement with the 

gold price predicted by the GRU model. A line plot is used to 

represent these two time series. The X-axis of the graph 

represents time, taken from the 'time' column in the original 

dataset, for the testing data segment. The Y-axis represents the 

gold price in its original scale. The output visualization is 

presented in Fig. 5 as follows: 

 

 
Fig  5. Visualization of Actual vs Predicted Prices 

 

G. Evaluation 

To measure the performance of the GRU model in predicting 

XAU/USD prices, the following evaluation metrics will be 

used: 

1. Mean Absolute Error (MAE), This metric computes 

the average of the absolute prediction errors.  MAE 

offers a summary of the mean prediction error 

expressed in the original price units.  The formula for 

Mean Absolute Error (MAE) is as follows: 

𝑀𝐴𝐸 = 
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1   (5) 

Where: 

n is the total number of predictions. 

𝑦𝑖  is the actual XAU/USD price at time i. 
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�̂�𝑖 is the predicted XAU/USD price by the model at 

time i. 

MAE is readily interpretable as its outcome is 

expressed in the same units as the original data.  

Nevertheless, MAE does not assign greater 

significance to substantial errors, rendering it less 

responsive to outliers in comparison to MSE and 

RMSE. [10] 

2. Mean Squared Error (MSE), computes the average of 

the squared prediction errors. MSE exhibits more 

sensitivity to substantial errors than MAE due to the 

squaring of errors. The formula for Mean Squared 

Error (MSE) is as follows: 

𝑀𝑆𝐸 = 
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1   (6) 

Where: 

n, 𝑦𝑖 , �̂�𝑖 have the same meanings as in the MAE 

formula. 

MSE penalizes large errors more than MAE, which 

is beneficial if the model needs to avoid large errors. 

However, the MSE result is in squared units of the 

original data, making interpretation more difficult [11] 

3. Root Mean Squared Error (RMSE) is the square root 

of Mean Squared Error (MSE).  RMSE provides the 

error value in the same units as the original data, 

facilitating interpretation in contrast to MSE.  

Furthermore, as it represents the square root of the 

Mean Squared Error, the Root Mean Squared Error 

(RMSE) is particularly sensitive to significant errors.  

The formula for RMSE is: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸  = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1    (7) 

Where: 

MSE = calculated as in the previous MSE formula. 

RMSE penalizes large errors more heavily and is 

more sensitive to outliers compared to MAE. This 

metric is commonly used for comparing the 

performance of different models[10] 

III. DISCUSSION AND RESULTS 

The historical gold data (XAU/USD) obtained from 

TradingView, spanning from November 21, 2006, to March 9, 

2025, serves as the dataset for this study. The original dataset 

consists of 4782 data points (rows). After performing 

preprocessing steps as outlined in Section 3 (Methodology), 

including data normalization using the Min-Max Scaler and the 

formation of time series data sequences with a timestep of 30, 

the number of data samples ready for training and testing the 

model is 4752 samples (i.e., the original data minus the 

lookback). 

The GRU model used in this study has a Sequential 

architecture consisting of four hidden layers, each being a GRU 

layer with 50, 100, 128, and 256 units. The first GRU layer 

receives input with dimensions (30, 1), reflecting the 30 

timesteps and 1 feature (normalized closing price). The first 

three GRU layers are configured with return_sequences=True, 

so that each layer produces a full output sequence, which then 

becomes the input for the subsequent GRU layer. The fourth 

GRU layer uses return_sequences=False because it is the last 

GRU layer before the output Dense layer. Its output is averaged 

into a single vector of size 50, representing the temporal 

features of the 30-step input sequence. The output layer is a 

single Dense layer that predicts a single price value (the next 

normalized price). 

 

The model is compiled with the Adam optimizer, known for 

its efficiency in handling sparse or noisy data, and uses Mean 

Squared Error (MSE) as the loss function, which is commonly 

used for regression problems. A summary of the model 

architecture and the number of trainable parameters is shown in 

the table 2. 

 
TABLE 1. GRU Model Architecture 

Layer (type) Output Shape Param 

gru (GRU) (None, 30, 50)   7.950 

gru_1 (GRU)   (None, 30, 50) 15.300 

gru_2 (GRU) (None, 30, 50) 15.300 

gru_3 (GRU) (None, 50) 15.300 

dense (Dense)   (None, 1) 51 

 

To identify the most effective hyperparameter configuration, 

the GRU model was trained nine times, each with different 

combinations of epochs (50, 100, 150) and batch sizes (16, 32, 

64). During the training process, the model's performance on a 

small portion of the training data (set aside as a validation split, 

accounting for 20% of the training data) was monitored. The 

training loss and validation loss were recorded at each epoch. 

 

 
Fig  6. An Example of a Loss History Plot 

Fig. 6 presents several examples of loss history plots during 

training. Ideally, both the training loss and validation loss 

should decrease as the epochs progress, indicating that the 

model is learning from the data. However, if the validation loss 

begins to increase while the training loss continues to decrease, 

this is an indication of overfitting—the model memorizes the 

training data but loses its ability to generalize to unseen data. 
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In this context, the role of Early Stopping becomes crucial. 

Early Stopping is a regularization technique that monitors 

performance metrics (in this case, validation loss) on the 

validation set. If the monitored metric does not show 

improvement (or even worsens) over a specified number of 

consecutive epochs (patience = 15), the training process is 

automatically halted, and the best model weights from the 

previous epoch are restored. This prevents the model from 

training too long and overfitting, thus improving its 

generalization ability on new data (test data). The "Epochs 

Completed" column in Table 3 reflects the actual number of 

epochs completed by the training before Early Stopping was 

activated, which is often less than the nominal epoch count (50, 

100, 150) specified. 

 
TABLE 2. 72 hyperparameter Combination Experiment 

Epoch 
Batch 

Size 
MAE MSE RMSE 

Training 

Epochs 

Completed 

50 16 0.006941  0.000089  0.009451           30 

50 32 0.007080 0.000096 0.009809              50 

50 64 0.008334   0.000134    0.011584                          50 

100 16 0.008420   0.000140 0.011827                        28 

… … … … … … 

100 32 0.008514   0.000143    0.011949                          44 

100 64 0.007486   0.000109    0.010457                          81 

150 16 0.008577   0.000148    0.012154                          31 

150 32 0.007239   0.000101    0.010043                          43 

150 64 0.006961   0.000091    0.009555                          64 

      

 
Fig  7. Prediction Model Error Graph 

Based on the results from 72 experiments, the 

hyperparameter combination that resulted in the lowest 

normalized MSE value on the internal validation set (monitored 

by Early Stopping and confirmed by final evaluation on the test 

set) was: Epochs=100 (although it was stopped earlier by Early 

Stopping at epoch 83), Batch Size=16, Units=256, and Dropout 

Rate=0.1. The model, retrained with this optimal configuration, 

was then evaluated on the test dataset. Fig. 7 presents a graph 

of testing data errors with the best hyperparameter values. After 

reversing the prediction results to the original price scale 

through inverse transformation using the same scaler, the 

following performance metrics were obtained: MAE of 

25.761967, MSE of 954.970235, and RMSE of 30.902593. Fig. 

8 visualization comparing the actual and predicted prices on the 

test data demonstrates the ability of this optimal model to 

capture the general trend of gold price movement.  

 

 
Fig  8. Visualization of Actual vs Predicted Prices 

To validate the relative effectiveness of the GRU model, a 

comparison was made with a simple Recurrent Neural Network 

(RNN) model as the baseline model. Using the MAE metric, the 

optimized GRU model MAE = 0.017721 (normalized) was 

compared with the performance of the RNN model. The RNN 

model produced an MAE of 0.006556 (normalized) on the same 

test data. This comparison shows that the GRU model 

demonstrates superior performance compared to RNN, 

indicating that the gate mechanism in GRU (update gate and 

reset gate) is more effective in handling long-term 

dependencies and gradient flow in gold price time series data 

compared to the simpler RNN architecture. The following is a 

graph comparing MAE between GRU and RNN in Fig. 9. 

 

 
Fig  9. Comparison of MAE GRU and RNN 

Although the GRU model shows promising results, the 

presence of prediction errors indicates that there are factors that 

cannot be fully modeled. Some potential causes of prediction 

errors include: 

1. Intrinsic Data Volatility: Gold prices, like other 

financial assets, are inherently volatile and influenced 

by complex and often unpredictable factors. Periods of 

high volatility, during which prices can fluctuate 

significantly in a short period of time, pose a particular 

challenge for time series prediction models. Models 

may struggle to fully capture sudden spikes or drops in 

prices if such patterns are not sufficiently represented 

in the training data. 

2. External Economic Factors: The models developed in 

this study only use historical price data as input. 

However, gold prices are strongly influenced by 

various external macroeconomic and geopolitical 

factors that are not explicitly included as features in 

the models. Factors such as central bank monetary 

policy (e.g., interest rate changes), exchange rates 
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(particularly the US Dollar), inflation rates, global 

political uncertainty, industrial demand, and market 

sentiment can cause price movements that cannot be 

predicted based solely on historical data. The absence 

of these exogenous variables in the model may limit 

its predictive accuracy, especially when these external 

factors undergo significant changes. 

Overall, these findings suggest that the GRU model is a valid 

and promising approach for gold price forecasting. However, to 

enhance the accuracy and robustness of the model in the future, 

considering the integration of relevant external features and 

exploring more advanced model architectures or hybrid 

approaches could be beneficial research directions. A more in-

depth analysis of error characteristics, as discussed, is also 

important to guide further model development iterations. 

IV. CONCLUSION 

 This study successfully implemented and evaluated a Gated 
Recurrent Unit (GRU) model with a four-layer architecture for 
the task of daily gold closing price prediction. Through a 
systematic hyperparameter optimization process, testing 72 
different combinations of epochs, batch size, units per GRU 
layer, and dropout rate, it was found that the configuration with 
100 nominal epochs (stopped early at epoch 83 by Early 
Stopping), batch size of 16, 256 units, and dropout rate of 0.1 
resulted in the best performance based on the MSE metric on 
the validation data. Evaluation on the test data showed that this 
optimal model was able to capture the main patterns and trends 
in the historical gold price data, achieving an RMSE value of 
around 30.90 after the scale was reversed. These results indicate 
that the GRU model, when properly configured and trained 
using techniques such as Early Stopping to prevent overfitting, 
is a promising approach for forecasting complex financial time 
series such as gold prices. However, the presence of prediction 
errors suggests that further improvements are still possible, 
such as through the addition of external features or exploration 
of more advanced model architectures 
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