

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 02, PP 141-147

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i2.2352, Copyright ©2025

Submitted : May 1, 2025, Revised : May 11, 2025, Accepted : May 14, 2025, Published : May 26, 2025

141

Optimizing Gated Recurrent Unit (GRU) for Gold

Price Prediction: Hyperparameter Tuning and Model

Evaluation on Historical XAU/USD Data

Abdul Faqih[1]*, Muhammad Jauhar Vikri[2], Ita Aristia Sa’ida[3]
Department of Informatics Engineering[1], [2], [3]

University of Nahdlatul Ulama Sunan Giri

Bojonegoro, Indonesia

abdulfaqih7777@gmail.com [1], vikri@unugiri.ac.id [2], itaaristia@unugiri.ac.id [3]

Abstract— This study investigates the use of a Gated Recurrent

Unit (GRU) model with a four-layer architecture for daily gold price

closing prediction, motivated by the model's ability to effectively

capture temporal dependencies in time series data. Gold price

forecasting is highly challenging due to its volatility and external

factors, making it an important area of research for investors and

financial analysts. By systematically optimizing hyperparameters

through 72 combinations of epochs, batch size, GRU layer units, and

dropout rates, the study identifies the optimal configuration (100

epochs, batch size of 16, 256 units, dropout rate 0.1) based on MSE

performance on validation data. The best model achieved MAE of

25.76, MSE of 954.97, and RMSE of 30.90, after inverse

transformation on test data. These results highlight the potential of

the GRU model in accurately forecasting gold prices, with

implications for financial decision-making . However, the prediction

error suggests that further improvements could be made by

incorporating external factors or exploring advanced model

architectures.

Keywords— Gated Recurrent Unit (GRU), Gold Price Prediction,

Hyperparameter Optimization, Time Series

I. INTRODUCTION

Investment activities are an integral part of the modern
economy, where individuals and institutions allocate capital
with the aim of generating returns or preserving asset value in
the future. A variety of asset classes are available to investors,
ranging from stocks, bonds, real estate, to commodities, each
with distinct risk profiles and potential returns. Among the
many investment options available, individuals tend to choose
investments that offer higher returns [1]. One attractive option
is gold, which is not only valued as a raw material for jewelry
and technology, but also widely recognized as a vital
investment instrument. Gold serves as a store of value (safe
haven) especially during times of global economic turmoil, as
well as a hedge against inflation and currency devaluation [2].

 Price fluctuations in XAU/USD are driven by factors such
as changes in currency exchange rates, interest rate policies
(especially those of central banks like the U.S. Federal
Reserve), inflation rates, and geopolitical tensions [3]. The
dynamics of physical gold supply and demand also contribute
to these fluctuations, making it crucial for investors to
accurately predict price movements [4]. The complex and
interrelated nature of these factors makes forecasting gold

prices a challenging yet valuable task.

 This study aims to address the challenge of predicting daily
gold prices by implementing the Gated Recurrent Unit (GRU)
model, which is well-suited for capturing the temporal
dependencies in financial time series data. By evaluating
various hyperparameter configurations, this research seeks to
improve the accuracy of gold price predictions and provide a
more reliable tool for investors.

To support investment decision-making amid gold price
volatility, various studies have been conducted to develop
accurate prediction methods. [5]This study compares the
performance of models based on Recurrent Neural Networks
(RNN), including LSTM and GRU, in forecasting economic
and financial data in Indonesia, such as the IHSG, export value,
and GDP. The results of this study indicate that the GRU model
performs best overall and is more stable than RNN and LSTM
on the data. On average, GRU recorded the smallest MAPE
values on IHSG (Index Harga Saham Gabungan) data
(0.3695%), export data (7.36%), and GDP data (1.77%).
However, this study does not specifically focus on gold price
prediction. The study also suggests increasing the number of
scenarios with other combinations of hyperparameters and
using model search techniques [6].

Specifically implements and compares GRU, Bi-GRU,
LSTM, and Bi-LSTM for global gold price prediction. This
study uses historical gold price data from Yahoo Finance and
explores various optimization techniques, batch sizes, and time
steps. The results of this study indicate that the Bi-GRU model
with Adam optimization, a batch size of 8, and a time step of 20
provides the best performance for global gold price prediction,
with an MSE value of 4.1153, an RMSE value of 2.0286, an
MAE value of 1.5881, and a MAPE value of 0.8857%.
Although relevant to the topic of gold price prediction using
GRU and its variations, this study did not use the best
hyperparameter selection [7].

A separate study evaluated the efficacy of various deep
learning algorithms, including Artificial Neural Network
(ANN), Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), and Long Short-Term Memory
(LSTM), in predicting gold prices utilizing a dataset sourced
from Kaggle. The study determined that the CNN model

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 02, PP 141-147

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i2.2352, Copyright ©2025

Submitted : May 1, 2025, Revised : May 11, 2025, Accepted : May 14, 2025, Published : May 26, 2025

142

utilizing Adam optimization and the MSE loss function
exhibited optimal performance in predicting gold prices within
the used dataset. The CNN model achieved the smallest MAE
value of 0.004848717761305338, the smallest MSE value of
4.3451079619612133e-05, and the smallest RMSE value of
0.006591743291392053. Although comparing RNN and
LSTM, this study did not explore the performance of GRU in
depth and recommends the use of a larger and more recent
dataset as well as exploration of other models such as
Transformer for further research.

Based on this literature review, there is a research gap
focusing on gold price prediction in Indonesia using the GRU
model. Although the GRU model has shown good performance
in forecasting economic time series data in Indonesia and global
gold price prediction, its in-depth application for specific gold
price prediction in Indonesia with adequate hyperparameter
exploration still requires further research. Therefore, This study
seeks to develop a predictive model for gold closing prices
(XAU/USD) utilizing the Gated Recurrent Unit (GRU)
architecture, while systematically assessing the effects of
diverse hyperparameter combinations: epochs (50, 100, 150),
batch sizes (16, 32, 64), neuron counts (50, 100, 128, 256 units),
dropout rates (0.1, 0.0), and a learning rate of 0.0001 on model
performance. The performance of each combination will be
measured and compared using the Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Root Mean Squared
Error (RMSE) metrics on the test data to identify the most
optimal configuration.

II. METHODOLOGY

The research process was carried out in several stages,

starting with the collection of gold price data (XAU/USD) from

TradingView, a popular financial data platform. Preprocessing

steps were then performed, including normalization using the

Min-Max Scaler to scale the data within the [0,1] range. A time

series sequence was created with a timestep of 30, representing

the past 30 days of price data for each prediction. Next, the

dataset was split into training (80%) and testing (20%) sets,

ensuring that the data followed a temporal order without

shuffling, to maintain the integrity of time series forecasting.

The GRU model with a four-layer hidden architecture was then

applied, utilizing the Adam optimizer and MSE loss function.

Various hyperparameter values were tested, including epochs

(50, 100, 150), batch sizes (16, 32, 64), number of neurons (50,

100, 128, 256 units), dropout (0.1, 0.0), and learning rate

(0.0001).

The choice of these hyperparameters was based on

preliminary experiments and existing literature that indicated

these values would provide a good balance between training

time and model performance. For instance, the choice of batch

size and number of epochs was influenced by previous research

in financial time series forecasting, which suggested these

values as optimal for minimizing overfitting and improving

generalization. Despite the benefits of automated

hyperparameter optimization methods like Grid Search or

Random Search, they were not employed in this study due to

time constraints and computational resource limitations.

Instead, a more manual approach was taken to test a broad range

of hyperparameters, ensuring that the model’s performance

could be thoroughly evaluated with reasonable computational

effort.

Validation during training was carried out using a 20% split

of the training data to monitor model performance and prevent

overfitting through Early Stopping. Final evaluation was

conducted on the test dataset, using the MAE, MSE, and RMSE

metrics to compare the performance of different

hyperparameter configurations. This research method is

presented in the form of a flowchart in Fig. 1.

Fig 1. Research Method

A. Dataset

 This analysis utilizes historical data on the price of gold
traded against the US dollar (XAU/USD). This data was
obtained from the TradingView platform
(www.tradingview.com), a popular online platform that
provides real-time charting and financial market analysis tools.
The data includes time, opening price, high price, low price, and
closing price. The data used spans from November 2006 to
March 2025, with some of the data presented in Table 1.
Utilizing large and diverse datasets is crucial in financial
analysis as they enable more accurate predictions and better
generalization of models. Integrating deep learning and big data
algorithms significantly enhances the accuracy of financial risk
behavior predictions, highlighting the importance of extensive
datasets in financial forecasting [8].

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 02, PP 141-147

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i2.2352, Copyright ©2025

Submitted : May 1, 2025, Revised : May 11, 2025, Accepted : May 14, 2025, Published : May 26, 2025

143

TABLE I. XAU/USD DATASET FROM 2006 TO 2025

Time Open High Low Close

2006-09-21

21:00:00

584.2 592.7 584.2 589.65

2006-09-24

21:00:00

589.65 592 582.3 590.7

2006-09-25

21:00:00

590.7 594 586.1 591.8

2006-09-26

21:00:00

591.8 603.65 589.8 603

2006-09-27

21:00:00

603 607.1 600.4 601.1

2006-09-28

21:00:00

601.1 603.8 594.4 598.25

2006-10-01

21:00:00

598.25 604.15 594.75 596.7

2006-10-02

21:00:00

596.7 598.5 573.8 574.8

… … … … …

2025-03-02

22:00:00

2873.14 2895.21 2859 2892.985

2025-03-03

22:00:00

2892.7 2927.91 2881.98 2917.85

2025-03-04

22:00:00

2917.885 2929.98 2894.35 2919.265

2025-03-05

22:00:00

2918.685 2926.72 2891.15 2911.1

2025-03-06

22:00:00

2912.935 2930.54 2896.91 2909.55

2025-03-09

21:00:00

2912.41 2918.385 2896.71 2904.68

B. Data Normalization

Data normalization is an important technique in machine
learning and time series analysis, especially when using
gradient-based models such as GRU. Normalization aims to
minimize errors, ensure data is scaled and easy to process in
models. In this case study, we use the min-max scaling
technique with an interval of [0,1]. The formula for
normalization is shown in equation (1). Reference [9] data
normalization techniques, such as Min-Max scaling and Z-
normalization, have been explored to enhance model
performance. The results of normalization with min-max scaler
are shown in Fig. 2.

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑖𝑛 − 𝑋𝑚𝑖𝑛
 (1)

Explanation :
𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = value of the data after scaling.
𝑋 = original value of the data.
𝑋𝑚𝑖𝑛 = minimum value of the feature in the dataset.
𝑋𝑚𝑎𝑥 = maximum value of the feature in the dataset.

The results of data normalization are shown in the following
Fig 2:

Fig 2. Data after data normalization process

C. Data Splitting

 Maintaining temporal order during data splitting is crucial
for time series forecasting models to prevent data leakage and
ensure realistic performance evaluation, as highlighted [8]. The
constructed dataset (x and y) is partitioned into training and
testing subsets, with an allocation of 80% for training and 20%
for testing. The division is performed sequentially
(shuffle=False) to maintain the time sequence, in accordance
with the characteristics of time series data. The data division
visualization is presented in Fig. 3.

Fig 3. Training and Testing Data Split

D. GRU Model

The Gated Recurrent Unit (GRU) is a Recurrent Neural

Network (RNN) architecture developed to mitigate the

vanishing gradient issue commonly faced by conventional

RNNs, particularly when processing sequential data with long-

term dependencies [6].GRU can be considered an evolution of

simpler and more efficient RNNs, with the ability to learn and

retain information from data sequences over longer periods.

The primary function of GRU in neural networks is to process

sequential data by retaining relevant information from previous

time steps while filtering out irrelevant or outdated information.

This allows the network to understand the temporal context in

the data and make more accurate predictions.

The GRU structure simplifies the recurrent unit by

introducing two main gates, the update gate and the reset gate.

The Update gate (𝑧𝑡) controls the proportion of information

from the previous hidden state (ℎ𝑡−1) that is passed on to the

current hidden state (ℎ𝑡). Mathematically, the update gate is

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 02, PP 141-147

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i2.2352, Copyright ©2025

Submitted : May 1, 2025, Revised : May 11, 2025, Accepted : May 14, 2025, Published : May 26, 2025

144

calculated using the following formula:

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (2)

Explanation:

𝜎 = sigmoid function

𝑥𝑡 = current input

ℎ𝑡−1 = previous hidden state

𝑊𝑧 and 𝑈𝑧 = weight matrices

𝑏𝑧 = bias for the update gate.

The reset gate (𝑟𝑡) determines how much of the previous

hidden state is ignored in the calculation of the current hidden

state, calculated using the formula:

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (3)

Explanation:

𝜎 = sigmoid function

𝑥𝑡 = current input

ℎ𝑡−1 = previous hidden state

𝑊𝑟 and 𝑈𝑟 = weight matrices

𝑏𝑟 = bias for the reset gate.

The internal architecture of the GRU entails computing the

candidate hidden state (ℎ̃𝑡), which is derived from the current

input and the preceding hidden state, adjusted by the reset gate.

The candidate concealed state is calculated using the

subsequent formula:

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⨀ ℎ𝑡−1) + 𝑏ℎ) (4)

Explanation:

𝑡𝑎𝑛ℎ = hyperbolic tangent function

𝑟𝑡 = reset gate

ℎ𝑡−1 = previous hidden state

𝑊ℎ and 𝑈ℎ = weight matrices

𝑏ℎ = bias for the candidate hidden state

⨀ = denotes element-wise multiplication.

An illustration of GRU model hidden state computation is

shown in Fig. 4.

Fig 4. GRU Model Hidden State Computation

At this stage, the optimal GRU model architecture is built.

The model is configured as a sequential model, meaning layers

are added sequentially. The prepared GRU model is trained

using the training data. The model specifications are as follows:

1. Optimizer: Adam

2. Hidden layers: 4

3. Number of Neurons: 50, 100, 128, 256 units

4. Timestep: 30

5. Epochs: 50, 100, 150 (with early stopping)

6. Batch Size: 16, 32, 64

7. Dropout: 0.1, 0.0

8. Learning rate: 0.0001

E. Testing Process

The testing process is carried out after the computation

process on the training data. The trained model is then

implemented using the testing data to obtain the prediction

results.

F. Output Visualization

The visualization of the GRU model's prediction results is

performed to compare the actual gold price movement with the

gold price predicted by the GRU model. A line plot is used to

represent these two time series. The X-axis of the graph

represents time, taken from the 'time' column in the original

dataset, for the testing data segment. The Y-axis represents the

gold price in its original scale. The output visualization is

presented in Fig. 5 as follows:

Fig 5. Visualization of Actual vs Predicted Prices

G. Evaluation

To measure the performance of the GRU model in predicting

XAU/USD prices, the following evaluation metrics will be

used:

1. Mean Absolute Error (MAE), This metric computes

the average of the absolute prediction errors. MAE

offers a summary of the mean prediction error

expressed in the original price units. The formula for

Mean Absolute Error (MAE) is as follows:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1 (5)

Where:

n is the total number of predictions.

𝑦𝑖 is the actual XAU/USD price at time i.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 02, PP 141-147

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i2.2352, Copyright ©2025

Submitted : May 1, 2025, Revised : May 11, 2025, Accepted : May 14, 2025, Published : May 26, 2025

145

�̂�𝑖 is the predicted XAU/USD price by the model at

time i.

MAE is readily interpretable as its outcome is

expressed in the same units as the original data.

Nevertheless, MAE does not assign greater

significance to substantial errors, rendering it less

responsive to outliers in comparison to MSE and

RMSE. [10]

2. Mean Squared Error (MSE), computes the average of

the squared prediction errors. MSE exhibits more

sensitivity to substantial errors than MAE due to the

squaring of errors. The formula for Mean Squared

Error (MSE) is as follows:

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1 (6)

Where:

n, 𝑦𝑖 , �̂�𝑖 have the same meanings as in the MAE

formula.

MSE penalizes large errors more than MAE, which

is beneficial if the model needs to avoid large errors.

However, the MSE result is in squared units of the

original data, making interpretation more difficult [11]

3. Root Mean Squared Error (RMSE) is the square root

of Mean Squared Error (MSE). RMSE provides the

error value in the same units as the original data,

facilitating interpretation in contrast to MSE.

Furthermore, as it represents the square root of the

Mean Squared Error, the Root Mean Squared Error

(RMSE) is particularly sensitive to significant errors.

The formula for RMSE is:

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1 (7)

Where:

MSE = calculated as in the previous MSE formula.

RMSE penalizes large errors more heavily and is

more sensitive to outliers compared to MAE. This

metric is commonly used for comparing the

performance of different models[10]

III. DISCUSSION AND RESULTS

The historical gold data (XAU/USD) obtained from

TradingView, spanning from November 21, 2006, to March 9,

2025, serves as the dataset for this study. The original dataset

consists of 4782 data points (rows). After performing

preprocessing steps as outlined in Section 3 (Methodology),

including data normalization using the Min-Max Scaler and the

formation of time series data sequences with a timestep of 30,

the number of data samples ready for training and testing the

model is 4752 samples (i.e., the original data minus the

lookback).

The GRU model used in this study has a Sequential

architecture consisting of four hidden layers, each being a GRU

layer with 50, 100, 128, and 256 units. The first GRU layer

receives input with dimensions (30, 1), reflecting the 30

timesteps and 1 feature (normalized closing price). The first

three GRU layers are configured with return_sequences=True,

so that each layer produces a full output sequence, which then

becomes the input for the subsequent GRU layer. The fourth

GRU layer uses return_sequences=False because it is the last

GRU layer before the output Dense layer. Its output is averaged

into a single vector of size 50, representing the temporal

features of the 30-step input sequence. The output layer is a

single Dense layer that predicts a single price value (the next

normalized price).

The model is compiled with the Adam optimizer, known for

its efficiency in handling sparse or noisy data, and uses Mean

Squared Error (MSE) as the loss function, which is commonly

used for regression problems. A summary of the model

architecture and the number of trainable parameters is shown in

the table 2.

TABLE 1. GRU Model Architecture

Layer (type) Output Shape Param

gru (GRU) (None, 30, 50) 7.950

gru_1 (GRU) (None, 30, 50) 15.300

gru_2 (GRU) (None, 30, 50) 15.300

gru_3 (GRU) (None, 50) 15.300

dense (Dense) (None, 1) 51

To identify the most effective hyperparameter configuration,

the GRU model was trained nine times, each with different

combinations of epochs (50, 100, 150) and batch sizes (16, 32,

64). During the training process, the model's performance on a

small portion of the training data (set aside as a validation split,

accounting for 20% of the training data) was monitored. The

training loss and validation loss were recorded at each epoch.

Fig 6. An Example of a Loss History Plot

Fig. 6 presents several examples of loss history plots during

training. Ideally, both the training loss and validation loss

should decrease as the epochs progress, indicating that the

model is learning from the data. However, if the validation loss

begins to increase while the training loss continues to decrease,

this is an indication of overfitting—the model memorizes the

training data but loses its ability to generalize to unseen data.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 02, PP 141-147

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i2.2352, Copyright ©2025

Submitted : May 1, 2025, Revised : May 11, 2025, Accepted : May 14, 2025, Published : May 26, 2025

146

In this context, the role of Early Stopping becomes crucial.

Early Stopping is a regularization technique that monitors

performance metrics (in this case, validation loss) on the

validation set. If the monitored metric does not show

improvement (or even worsens) over a specified number of

consecutive epochs (patience = 15), the training process is

automatically halted, and the best model weights from the

previous epoch are restored. This prevents the model from

training too long and overfitting, thus improving its

generalization ability on new data (test data). The "Epochs

Completed" column in Table 3 reflects the actual number of

epochs completed by the training before Early Stopping was

activated, which is often less than the nominal epoch count (50,

100, 150) specified.

TABLE 2. 72 hyperparameter Combination Experiment

Epoch
Batch

Size
MAE MSE RMSE

Training

Epochs

Completed

50 16 0.006941 0.000089 0.009451 30

50 32 0.007080 0.000096 0.009809 50

50 64 0.008334 0.000134 0.011584 50

100 16 0.008420 0.000140 0.011827 28

… … … … … …

100 32 0.008514 0.000143 0.011949 44

100 64 0.007486 0.000109 0.010457 81

150 16 0.008577 0.000148 0.012154 31

150 32 0.007239 0.000101 0.010043 43

150 64 0.006961 0.000091 0.009555 64

Fig 7. Prediction Model Error Graph

Based on the results from 72 experiments, the

hyperparameter combination that resulted in the lowest

normalized MSE value on the internal validation set (monitored

by Early Stopping and confirmed by final evaluation on the test

set) was: Epochs=100 (although it was stopped earlier by Early

Stopping at epoch 83), Batch Size=16, Units=256, and Dropout

Rate=0.1. The model, retrained with this optimal configuration,

was then evaluated on the test dataset. Fig. 7 presents a graph

of testing data errors with the best hyperparameter values. After

reversing the prediction results to the original price scale

through inverse transformation using the same scaler, the

following performance metrics were obtained: MAE of

25.761967, MSE of 954.970235, and RMSE of 30.902593. Fig.

8 visualization comparing the actual and predicted prices on the

test data demonstrates the ability of this optimal model to

capture the general trend of gold price movement.

Fig 8. Visualization of Actual vs Predicted Prices

To validate the relative effectiveness of the GRU model, a

comparison was made with a simple Recurrent Neural Network

(RNN) model as the baseline model. Using the MAE metric, the

optimized GRU model MAE = 0.017721 (normalized) was

compared with the performance of the RNN model. The RNN

model produced an MAE of 0.006556 (normalized) on the same

test data. This comparison shows that the GRU model

demonstrates superior performance compared to RNN,

indicating that the gate mechanism in GRU (update gate and

reset gate) is more effective in handling long-term

dependencies and gradient flow in gold price time series data

compared to the simpler RNN architecture. The following is a

graph comparing MAE between GRU and RNN in Fig. 9.

Fig 9. Comparison of MAE GRU and RNN

Although the GRU model shows promising results, the

presence of prediction errors indicates that there are factors that

cannot be fully modeled. Some potential causes of prediction

errors include:

1. Intrinsic Data Volatility: Gold prices, like other

financial assets, are inherently volatile and influenced

by complex and often unpredictable factors. Periods of

high volatility, during which prices can fluctuate

significantly in a short period of time, pose a particular

challenge for time series prediction models. Models

may struggle to fully capture sudden spikes or drops in

prices if such patterns are not sufficiently represented

in the training data.

2. External Economic Factors: The models developed in

this study only use historical price data as input.

However, gold prices are strongly influenced by

various external macroeconomic and geopolitical

factors that are not explicitly included as features in

the models. Factors such as central bank monetary

policy (e.g., interest rate changes), exchange rates

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 02, PP 141-147

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i2.2352, Copyright ©2025

Submitted : May 1, 2025, Revised : May 11, 2025, Accepted : May 14, 2025, Published : May 26, 2025

147

(particularly the US Dollar), inflation rates, global

political uncertainty, industrial demand, and market

sentiment can cause price movements that cannot be

predicted based solely on historical data. The absence

of these exogenous variables in the model may limit

its predictive accuracy, especially when these external

factors undergo significant changes.

Overall, these findings suggest that the GRU model is a valid

and promising approach for gold price forecasting. However, to

enhance the accuracy and robustness of the model in the future,

considering the integration of relevant external features and

exploring more advanced model architectures or hybrid

approaches could be beneficial research directions. A more in-

depth analysis of error characteristics, as discussed, is also

important to guide further model development iterations.

IV. CONCLUSION

 This study successfully implemented and evaluated a Gated
Recurrent Unit (GRU) model with a four-layer architecture for
the task of daily gold closing price prediction. Through a
systematic hyperparameter optimization process, testing 72
different combinations of epochs, batch size, units per GRU
layer, and dropout rate, it was found that the configuration with
100 nominal epochs (stopped early at epoch 83 by Early
Stopping), batch size of 16, 256 units, and dropout rate of 0.1
resulted in the best performance based on the MSE metric on
the validation data. Evaluation on the test data showed that this
optimal model was able to capture the main patterns and trends
in the historical gold price data, achieving an RMSE value of
around 30.90 after the scale was reversed. These results indicate
that the GRU model, when properly configured and trained
using techniques such as Early Stopping to prevent overfitting,
is a promising approach for forecasting complex financial time
series such as gold prices. However, the presence of prediction
errors suggests that further improvements are still possible,
such as through the addition of external features or exploration
of more advanced model architectures

ACKNOWLEDGMENT

We would like to express our deepest gratitude to the faculty

and staff at Universitas Nahdlatul Ulama Sunan Giri for their

continuous support and guidance throughout this research.

Their valuable insights and feedback have been instrumental in

the development and completion of this study. We also extend

our sincere thanks to TradingView for providing the historical

gold price data, which formed the foundation of this research.

REFERENCES

[1] M. Fauzi, M. Jauhar Vikri, and S. Wahyudhi, ‘Sistem

PendukungcKeputusan Pemilihan Jenis Investasi MenggunakanxMetode

Analytical Hierarchy Process (AHP)’.

[2] A. F. Yuliana and R. Robiyanto, ‘PERAN EMAS SEBAGAI SAFE

HAVEN BAGI SAHAM PERTAMBANGAN DI INDONESIA PADA

PERIODE PANDEMI COVID-19’, Jurnal Ilmiah Bisnis dan Ekonomi

Asia, vol. 15, no. 1, pp. 1–11, Feb. 2021, doi: 10.32815/jibeka.v15i1.217.

[3] S. Novianto and H. Akbar Wibowo, ‘The Implementation of Data Mining

for Predicting XAU/USD Price Trends in the Forex Market on

MetaTrader 5 using Naïve Bayes Method’, Intelmatics, vol. 3, no. 2, pp.

85–90, Sep. 2023, doi: 10.25105/itm.v3i2.17199.

[4] R. Mattera, G. Athanasopoulos, and R. Hyndman, ‘Improving out-of-

sample forecasts of stock price indexes with forecast reconciliation and

clustering’, Quant Finance, vol. 24, no. 11, pp. 1641–1667, Nov. 2024,

doi: 10.1080/14697688.2024.2412687.

[5] C. Alkahfi, A. Kurnia, and A. Saefuddin, ‘Perbandingan Kinerja Model

Berbasis RNN pada Peramalan Data Ekonomi dan Keuangan Indonesia’,

MALCOM: Indonesian Journal of Machine Learning and Computer

Science, vol. 4, no. 4, pp. 1235–1243, Jul. 2024, doi:

10.57152/malcom.v4i4.1415.

[6] A. I. Putri, Y. Syarif, N. R. Aisyi, and N. Waeyusoh, ‘Implementation of

Gated Recurrent Unit, Long Short-Term Memory and Derivatives for

Gold Price Prediction’, vol. 2, no. 2, pp. 68–80, 2025, doi:

10.57152/predatecs.v2i2.1609.

[7] M. F. Julianto, M. Iqbal, W. F. Hidayat, and Y. Malau,

‘PERBANDINGAN PENERAPAN ALGORITMA DEEP LEARNING

DALAM PREDIKSI HARGA EMAS’, INTI Nusa Mandiri, vol. 19, no.

1, pp. 71–76, Aug. 2024, doi: 10.33480/inti.v19i1.5559.

[8] A. Jamarani, S. Haddadi, R. Sarvizadeh, M. Haghi Kashani, M. Akbari,

and S. Moradi, ‘Big data and predictive analytics: A sytematic review of

applications’, Artif Intell Rev, vol. 57, no. 7, Jul. 2024, doi:

10.1007/s10462-024-10811-5.

[9] R. Chaudhuri, S. Deb, and H. Das, ‘Noble Approach on Sensor Fused Bio

Intelligent Path Optimisation and Single Stage Obstacle Recognition in

Customized Mobile Agent’, Procedia Comput Sci, vol. 218, pp. 778–787,

Jan. 2023, doi: 10.1016/J.PROCS.2023.01.058.

[10] David Andrés, ‘Error Metrics for Time Series Forecasting - ML Pills’.

Accessed: May 01, 2025. [Online]. Available: https://mlpills.dev/time-

series/error-metrics-for-time-series-forecasting/

[11] R. J. Hyndman and A. B. Koehler, ‘Another look at measures of forecast

accuracy’, Int J Forecast, vol. 22, no. 4, pp. 679–688, Oct. 2006, doi:

10.1016/J.IJFORECAST.2006.03.001.

