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Abstract— Cervical cancer represents a significant public 

health issue affecting women worldwide, and identifying the 

severity of lesions early on is crucial to selecting the right 

treatment. This research investigates and compares the 

effectiveness of various Convolutional Neural Network (CNN) 

models in classifying colposcopic images according to the severity 

of cervical lesions. The dataset used was obtained from the 

International Agency for Research on Cancer (IARC) and 

AnnoCerv, consisting of 452 colposcopy images categorized into 

four classes: Normal, CIN 1, CIN 2, and CIN 3. Five CNN 

architectures were evaluated: MobileNetV2, InceptionV3, 

Xception, VGG16, and DenseNet121. Experiments were 

conducted using default hyperparameters: batch size of 32, 

learning rate of 0.001, and 100 epochs. The results showed that 

MobileNetV2 achieved the highest accuracy at 67%, followed by 

DenseNet121 (60%), Xception (60%), InceptionV3 (55%), and 

VGG16 (42%). Based on these findings, MobileNetV2 is the most 

optimal model for classifying colposcopy images in this study. 

However, the study is limited by class imbalance and dataset size, 

which may affect model generalizability. Future work may explore 

ensemble learning techniques and larger, more diverse datasets 

for improved accuracy. 

Keywords— Cervical Cancer, Colposcopy Image Classification, 

CNN, CIN Classification 

I. INTRODUCTION 

Artificial Intelligence (AI) has rapidly advanced in recent 

decades with widespread applications across various domains, 

including healthcare. One of the most prominent branches of AI 

is deep learning, which has demonstrated outstanding 

performance in medical image analysis [1]. Deep learning 

models, particularly Convolutional Neural Networks (CNN), 

have been successfully applied to various disease classification 

tasks, such as brain tumors, breast cancer, and skin cancer, 

achieving high levels of accuracy [2][3][4]. 

Cervical cancer ranks as the fourth most common cancer 

affecting women and is one of the most feared diseases among 

them. WHO statistics reveal that globally in 2020, cervical 

cancer led to around 604,000 new cases and approximately 

341,831 fatalities [5]. About 95% of these cases are caused by 

infection with the Human Papillomavirus (HPV) [6] [7]. WHO 

recommends several screening methods, including cytology 

tests (Pap smear), HPV tests, visual inspection with acetic acid 

(VIA), and colposcopy [8]. Among the available methods, VIA 

is regarded as one of the most cost-effective and can be applied 

in resource-limited healthcare settings. The procedure involves 

applying acetic acid to the cervix, followed by direct visual 

inspection to detect acetowhite lesions. The World Health 

Organization (WHO) classifies abnormal cervical lesions found 

through VIA or alternative screening tools as Cervical 

Intraepithelial Neoplasia (CIN), which is divided into three 

grades: CIN 1, CIN 2, and CIN 3. 

In clinical practice, colposcopy is often performed after a 

VIA test to further examine suspicious areas of the cervix. 

Colposcopy utilizes an optical magnifying instrument 

(colposcope) to produce clearer and more detailed cervical 

images. These images reveal specific visual patterns such as 

mosaicism, punctation, and lesion borders that help determine 

CIN severity levels. These visual features serve as critical 

indicators for developing deep learning-based classification 

models to detect and differentiate CIN levels more accurately 

[9]. 

Previous studies on pre-cancerous cervical lesion 

classification have mostly focused on the Pap smear method 

[10][11][12], and predominantly employed binary 

classification approaches—distinguishing only between normal 

and abnormal images. Although this approach aids in initial 

screening, binary classification does not provide specific 

information on lesion severity, which is essential for 

determining proper medical follow-up. Some studies have 

attempted to classify cervical lesions from colposcopy images 

into categories such as normal, CIN1, CIN2, CIN3, and cancer. 

For instance, a study using the ResNet-152 model achieved an 

average accuracy of 51.7% for multi-class CIN classification, 

with an Area Under the Curve (AUC) of 0.781 to distinguish 

high-risk from low-risk lesions [13]. Another study developed 

an ensemble deep learning model named CYENET for 

classifying cervical cancer from colposcopy images, which 

improved classification accuracy to 92.3%, compared to 73.3% 

achieved by the VGG19 model [14]. In a different study, a CAD 

system was developed by integrating deep learning descriptors 
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such as ResNet50, ResNet101, and ResNet152 with 

dimensionality reduction techniques for colposcopy image 

classification. This approach achieved outstanding 

performance, ranging from 97%–100% in normal-abnormal 

classification and lesion type identification [15]. 

While several studies have attempted colposcopy-based 

classification, the often use limited datasets, focus on binary 

classification, or apply only one CNN model, making it difficult 

to assess comparative model performance. In addition, limited 

publicly available colposcopy datasets, such as IARC and 

AnnoCerv, pose challenges related to data imbalance dan image 

variability. 

Despite these promising results, challenges such as class 

imbalance, varying image quality, and differences in 

colposcopy equipment across institutions remain. Therefore, 

this study aims to evaluate and compare several popular CNN 

architectures—MobileNetV2, InceptionV3, Xception, VGG16, 

and DenseNet121—for CIN lesion classification based on 

colposcopy images. MobileNetV2 is known for its high 

efficiency [16], InceptionV3 is effective in capturing complex 

visual features from medical images [17], Xception improves 

upon Inception using separable convolutions for higher 

accuracy in image classification tasks [18] , VGG16, despite its 

large number of parameters, remains a strong baseline due to its 

simple yet effective convolutional structure [19], and 

DenseNet121 allows for efficient feature and gradient 

propagation through dense layer connections, showing strong 

performance in image-based disease classification [20]. This 

evaluation is expected to provide insights into model 

performance and its potential applications in clinical settings, 

particularly for early detection of cervical cancer. 

This study contributes to the field by evaluating the 

classification effectiveness of five different CNN models for 

multi-class classification of cervical lesion severity using 

colposcopy images. To the best our knowledge, no existing 

studies have performed a direct evaluation and comparison of 

these five CNN architectures using both IARC and AnnoCerv 

datasets for four-class cervical lesion classification from 

colposcopy images. This positions our work as a novel 

contribution that can guide future model selection and 

deployment in clinical decision support systems. 

II. RESEARCH METHODOLOGY 

This research began with problem identification, followed by 

a literature review to build upon previous related studies. The 

next step involved collecting data aligned with analytical 

requirements. The research methodology includes data 

preprocessing, architectural design, model training and 

evaluation, and finally, documentation and reporting. The 

research stages are described as follows. 

 

 

Fig. 1. Research flow 

A. Problem Identification 

The initial stage of this study involved identifying the 
specific research problem. The focus of this study is the 
classification of pre-cancerous cervical lesions resulting from 
visual inspection with acetic acid (VIA) into four categories: 
Normal, CIN 1, CIN 2, and CIN 3. This research aims to solve 
the problem by implementing a system based on different CNN 
models, which are then compared to find the one that performs 
best in detecting pre-cancerous cervical lesions. 

As illustrated in Table 1, the dataset used in this study 
comprises colposcopic images categorized into four classes 
based on lesion severity: “Normal,” “CIN 1” (mild dysplasia), 
“CIN 2” (moderate dysplasia), and “CIN 3” (severe dysplasia). 
The “Class” row defines the lesion grade, while the “Image” 
row displays representative samples of each category, 
highlighting distinct visual characteristics such as changes in 
epithelial texture, color, and vascular patterns. These annotated 
samples serve as input for training and evaluating the proposed 
deep learning models aimed at automated classification of 
cervical lesion severity. 

TABLE I.  CERVICAL PRE-CANCEROUS LESIONS 

COLPOSCOPY IMAGE DATASET 

Normal CIN 1 CIN 2 CIN 3 

    

    

B. Data Collection Method 

This stage includes the process of gathering cervical lesion 

image data to build the dataset used in this classification 

research. The dataset was obtained from two primary sources: 

the International Agency for Research on Cancer (IARC) and 

AnnoCerv [21]. The IARC dataset comprises 913 colposcopy 

images from 200 case examinations, while the AnnoCerv 

dataset contains 527 images from 100 cases. The image formats 

are .jpg for IARC and a combination of .jpg and .png for 

AnnoCerv; however, only the .jpg format was used. 

Colposcopic images in the IARC dataset are collected for 

each case after applying a sequence of diagnostic fluids—

namely, normal saline, vinegar acid solution with and without 

a green filter, and an iodine-based solution. Meanwhile, the 

AnnoCerv dataset provides images after acetic acid and Lugol’s 

iodine applications. These datasets were used for both training 

and testing in developing a machine learning-based image 

classification model to detect and identify pre-cancerous 
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cervical lesion severity. 

 

C. Pre-Processing 

The preprocessing stage was conducted to prepare the data 

for training and evaluating the cervical lesion image 

classification models. The datasets from IARC and AnnoCerv 

were first grouped into four classes based on lesion severity: 

Normal, CIN 1, CIN 2, and CIN 3. Label assignment referred 

to the accompanying medical diagnostic information for each 

image. Only acetic acid-applied images were used in this study, 

as they are medically considered the most relevant for 

identifying pathological changes in cervical tissue. The 

grouping resulted in the following distribution: 89 images for 

Normal, 148 for CIN 1, 105 for CIN 2, and 110 for CIN 3, as 

detailed in Table 2. 

TABLE II.  DISTRIBUTION OF IARC AND ANNOCERV 

DATASET PER CLASS 

Dataset Normal CIN 1 CIN 2 CIN 3 

IARC 35 22 36 59 

Annocerv 54 126 69 51 

Total 89 148 105 110 

 

Each image was resized to 224×224 pixels to ensure 

compatibility with the expected input format of the CNN 

frameworks. The original resolution of IARC images was 

800×600 pixels, while AnnoCerv images were 2976×1984 

pixels. 

To address class imbalance, image augmentation was 

applied. Augmentation strategies involved applying rotations, 

horizontal and vertical displacements, horizontal mirroring, and 

brightness adjustments to the images. The applied 

augmentations contributed to balancing class distributions, 

enhancing dataset variability, and mitigating overfitting. After 

augmentation, each class contained 148 images, resulting in a 

final dataset of 592 images. Following data preprocessing, a 

split was performed where 70% of the dataset was utilized for 

training and 30% for validation. 

 

D. Model Architecture 

This study conducted training and evaluation for several 

CNN model architectures, including MobileNetV2, 

InceptionV3, Xception, VGG16, and DenseNet121. Using a 

70:30 training validation split, 412 images were used for 

training and 180 for validation. 

 

E. Evaluation of Architectural Design Result 

A confusion matrix was employed in the evaluation process 

of the trained models, offering performance indicators including 

accuracy, precision, recall, and the F1-score to judge model 

effectiveness. The formulas used in this evaluation process are 

as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑁

𝑖=1

 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝑁
𝑖=1

 (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

III. RESULTS AND DISCUSSION 

This research evaluates the classification accuracy of 

several CNN models in identifying pre-cancerous cervical 

lesions, employing MobileNetV2, InceptionV3, Xception, 

VGG16, and DenseNet121 in the experimentation process. All 

models were trained under the same settings, using a batch size 

of 32, a learning rate of 0.001, and 100 epochs. A total of 412 

data points were used for training, while 180 were allocated for 

validation. The following are the results obtained from each 

model: 

 

A. MobileNetV2 

The classification outcomes of the MobileNetV2 model, 

represented as a confusion matrix, are depicted in Figure 2, 

which provides detailed insight into the classification 

performance across the four classes: Normal, CIN1, CIN2, and 

CIN3. 

 

Fig. 2. Confusion Matrix of MobileNetV2 

TABLE III.  MOBILENETV2 MODEL EVALUATION 

 Precision Recall F1-Score 

Normal 53% 81% 64% 

CIN 1 68% 71% 70% 

CIN 2 78% 69% 73% 

CIN 3 87% 44% 59% 

 

The model demonstrates strong performance in detecting 

Normal cases, correctly classifying 39 out of 48 samples, which 

corresponds with the high recall value of 81% reported in Table 

3. However, the relatively low precision of 53% for this class 

indicates a high number of false positives, as seen in the 

misclassification of several CIN 1, CIN 2, and CIN 3 cases as 



 

 

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 02, PP 189-195 
 

 

p-ISSN 2301-7988, e-ISSN 2581-0588 

DOI : 10.32736/sisfokom.v14i2.2361, Copyright ©2025 

Submitted : May 6, 2025, Revised : May 13, 2025, Accepted : May 14, 2025, Published : May 26, 2025 

192 

 

Normal. A total of 32 samples from the CIN 1 class were 

correctly identified by the model, out of 45 instances, reflecting 

a balanced performance with a recall of 71% and precision of 

68%. Similarly, the CIN 2 class shows reliable classification 

results with 31 correct predictions out of 45, consistent with its 

69% recall and 78% precision. In contrast, the CIN 3 class 

reveals a notable weakness of the model: although it achieves a 

high precision of 87%, indicating that most predictions labeled 

as CIN 3 are accurate, it only correctly classifies 20 out of 45 

actual CIN 3 cases. This results in a low recall of 44%, 

suggesting that many true CIN 3 cases are not being detected. 

The overall pattern observed in the confusion matrix confirms 

the results summarized in Table 3 and highlights the model’s 

strength in precision for higher-grade lesions (e.g., CIN 3) 

while revealing its limited sensitivity in detecting all true cases 

within that class. 

 

B. InceptionV3 

The classification outcomes of the InceptionV3 model, 

represented as a confusion matrix, are depicted in Figure 3, 

offering a detailed breakdown of the classification outcomes 

across the four diagnostic categories: Normal, CIN 1, CIN 2, 

and CIN 3. The model correctly identified 27 Normal cases, out 

of what appears to be 48 actual Normal samples, resulting in a 

recall of approximately 56%, which matches the value reported 

in Table 4.  

 

 

Fig. 3. Confusion Matrix of Inception V3 Model 

TABLE IV.  INCEPTIONV3 MODEL EVALUATION 

 Precision Recall F1-Score 

Normal 66% 56% 61% 

CIN 1 47% 40% 43% 

CIN 2 48% 56% 52% 

CIN 3 58% 67% 62% 

 

The precision for the Normal class was 66%, suggesting that 

when the model predicted a case as Normal, it was correct most 

of the time. For the CIN 1 class, only 18 cases were correctly 

classified out of an estimated 45, yielding a recall of about 40%. 

This class also had a low precision of 47%, which is consistent 

with its significant overlap with other categories, particularly 

CIN 2, as reflected in the confusion matrix. The CIN 2 class 

showed a relatively balanced performance, with 25 out of 45 

samples correctly classified, leading to a recall of 56% and a 

precision of 48%, aligning with the reported metrics. In 

contrast, the CIN 3 class exhibited the highest recall at 67%, as 

the model correctly classified 30 of the 45 CIN 3 samples. 

However, the precision for CIN3 was lower (58%), indicating 

that a number of other class instances (e.g., CIN 2) were 

misclassified as CIN 3. This pattern suggests that the model was 

more sensitive in detecting CIN 3 but lacked specificity. 

Overall, the confusion matrix confirms the findings in Table 4 

and supports the observation that InceptionV3, while able to 

capture a broader range of CIN 3 cases, struggled with class 

separability—particularly between CIN 1 and CIN 2—likely 

due to the subtle visual differences among these lesion grades. 

 

C. Xception 

 

 

Fig. 4. Confusion Matrix of Xception 

TABLE V.  XCEPTIOON MODEL EVALUATION 

 Precision Recall F1-Score 

Normal 61% 69% 65% 

CIN 1 59% 44% 51% 

CIN 2 56% 67% 61% 

CIN 3 63% 58% 60% 

 

This class also achieved a precision of 61%, indicating a fair 

trade-off between correctly identifying Normal cases and 

minimizing false positives. For the CIN 1 class, only 20 out of 

an estimated 45 instances were correctly classified, leading to 

the lowest recall among the classes (44%) and a precision of 

59%. This supports the observation that CIN 1 remains the most 

difficult class to distinguish, likely due to its visual similarity to 

both Normal and CIN 2 cases, as also seen in the confusion with 

14 CIN 1 samples misclassified as CIN 2. The CIN 2 class 

showed good classification ability, with 30 correct predictions 

and a recall of 67%, while achieving a precision of 56%. For 

the CIN 3 class, the model correctly predicted 26 samples with 

a recall of 58% and a precision of 63%, reflecting a moderate 

but consistent detection performance. Overall, the confusion 

matrix supports the evaluation metrics in Table 5, confirming 

that Xception maintains a more even balance between 

sensitivity and specificity compared to previous models. While 

its performance does not dominate in any single class, it offers 
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stable results across all categories, making it a promising 

candidate for general-purpose classification in this task. 

 

D. VGG16 

 

Fig. 5. Confusion Matrix of VGG16 

TABLE VI.  VGG16 MODEL EVALUATION 

 Precision Recall F1-Score 

Normal 53% 33% 41% 

CIN 1 35% 13% 19% 

CIN 2 50% 49% 49% 

CIN 3 35% 71% 47% 

 

The classification outcomes of the VGG16 model, represented 

as a confusion matrix, are depicted in Figure 5, which reveals 

the weakest overall performance among the tested models, 

aligning with its lowest reported accuracy of 42%. The Normal 

class shows a poor classification outcome, with only 16 

correctly predicted samples out of an estimated 48, resulting in 

a recall of approximately 33% and a precision of 53%, as stated 

in Table 6. This indicates a high number of false negatives, with 

many Normal cases misclassified as CIN 3. The CIN 1 class 

performed the worst overall, with only 6 correct predictions and 

a recall of just 13%, reflecting the model’s significant struggle 

to identify CIN 1 instances. Its precision of 35% further 

emphasizes the high degree of confusion with other classes, 

particularly CIN 2 and CIN 3, as evident in the matrix. CIN 2 

showed slightly better results with 22 correct predictions, 

yielding a recall of 49% and a matching precision of 50%, 

demonstrating somewhat balanced but modest performance. 

Notably, CIN 3 achieved the highest recall at 71%, with 32 true 

positives. However, its precision was just 35%, suggesting that 

while the model is sensitive to CIN 3 cases, it frequently 

misclassifies samples from other classes—especially Normal 

and CIN 1—as CIN 3. This imbalance indicates that the model 

heavily overpredicts CIN 3, potentially due to its limited 

capacity to distinguish between lower-grade lesions. Overall, 

the confusion matrix confirms that VGG16 suffers from 

overgeneralization and class confusion, especially in 

distinguishing Normal and CIN 1 cases, possibly due to the 

architecture’s rigidity and lack of deeper adaptive feature 

extraction, as suggested in Table 6. 

 

 

 

 

 

 

E. DenseNet121 

 

 

Fig. 6. Confusion Matrix of DenseNet21 

TABLE VII.  DENSENET21 MODEL EVALUATION 

 Precision Recall F1-Score 

Normal 53% 75% 62% 

CIN 1 59% 44% 51% 

CIN 2 65% 69% 67% 

CIN 3 70% 51% 59% 

 

Figure 6 shows the confusion matrix for the DenseNet121 

model, which provides insight into the classification behavior 

of its densely connected architecture. The model achieved a 

strong performance in identifying Normal cases, correctly 

predicting 36 out of approximately 48 samples, corresponding 

to a recall of 75% and a precision of 53%, as reported in Table 

7. This indicates a high sensitivity toward Normal class 

detection, although some misclassifications still occurred, 

particularly into CIN 1. The CIN 1 class had a lower recall of 

44% with 20 correct predictions, and a precision of 59%, 

suggesting continued challenges in differentiating this class 

from neighboring grades like CIN 2 and CIN 3. CIN 2 was the 

best-performing class, with 31 out of around 45 instances 

correctly identified, yielding a recall of 69% and a precision of 

65%. This strong performance supports the claim that 

DenseNet121 is well-suited for mid-stage lesion classification, 

likely due to its ability to retain and combine multi-level 

features effectively. For CIN 3, the model correctly predicted 

23 samples, achieving a recall of 51% and the highest precision 

among the classes at 70%. While this indicates that most CIN 3 

predictions were accurate, the relatively low recall means that a 

notable portion of CIN 3 cases were missed, often misclassified 

as Normal or CIN 2. Overall, the confusion matrix validates the 

evaluation results in Table 7, showing that DenseNet121 offers 

well-rounded performance, particularly excelling in CIN 2 

classification. However, further optimization—such as 

enhanced regularization—may be required to boost its 
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generalization in more challenging class boundaries. 

 
F. Model Comparison Summary 

TABLE VIII.  EVALUATION METRIC COMPARISON 

Model Accuracy 
Average 

Precision 

Average 

Recall 

Average 

F1-

Score 

MobileNetV2 67% 71,5% 66,25% 66,5% 

InceptionV3 55% 54,75% 54,75% 54,% 

Xception 60% 59,75% 59,5 59,25 

VGG16 42% 43,25% 41,5% 39% 

DenseNet121 60% 61,75% 59,75 59,75% 

 

 

Fig. 7. CNN Model Performance Compqrison 

 Based on Table 8 and Figure 1, MobileNetV2 outperformed 
all other models in this study with the highest accuracy of 67%, 
while VGG16 had the lowest performance with an accuracy of 
42%. MobileNetV2 excelled across all metrics, making it the 
best overall choice. DenseNet121 demonstrated comparable 
performance, particularly in precision and F1-score. Xception 
offered a well-balanced result across classes, while 
InceptionV3 showed inconsistent metrics, especially in F1-
score. VGG16 was the least suitable model for this 
classification task. 

 

G. Discussion and Limitations 

 While MobileNetV2 yielded the highest performance 
among tested CNN architectures, the overall accuracy across 
models (42% to 67%) highlights the difficulty of the 
classification task. This can be attributed to the relatively small 
dataset size and class imbalance, despite augmentation efforts. 
Models particularly struggled with distinguishing CIN 1, which 
may visually ensemble both Normal and CIN 2 cases. Futuru 
work should explore data balancing strategies, larger and more 
diverse datasets, and potentially ensemble-based models to 
enhance classification performance. 

 

IV. CONCLUSIONS AND SUGGESTIONS 

Based on the research findings and analysis, several 

conclusions can be drawn. The development of a classification 

model for pre-cancerous cervical lesions based on colposcopy 

images into four classes—Normal, CIN 1, CIN 2, and CIN 3—

involved several stages, including problem identification, data 

collection and class labeling, image preprocessing, model 

architecture selection (MobileNetV2, InceptionV3, Xception, 

VGG16, and DenseNet121), and model evaluation. 

Using identical training parameters—batch size of 32, 

learning rate of 0.001, and 100 epochs—the best accuracy 

achieved by each architecture was as follows: MobileNetV2: 

67% InceptionV3: 55% Xception: 60% VGG16: 42% 

DenseNet121: 60%. 

From these results, MobileNetV2 achieved the highest 

accuracy of 67%, indicating that it performed better than the 

other proposed architectures in classifying pre-cancerous 

cervical lesions based on colposcopy images across the four 

classes (Normal, CIN 1, CIN 2, and CIN 3). Meanwhile, 

VGG16 recorded the lowest accuracy at 42%, making it the 

least suitable architecture among those evaluated in this study. 

Overall, the obtained accuracy levels indicate that the 

classification performance still leaves room for improvement. 

Therefore, future research should consider several 

enhancements: Increasing the dataset size and diversity, to 

ensure broader generalization and better applicability in real-

world clinical settings. Optimizing training configurations to 

improve model performance. Applying more advanced data 

augmentation techniques or transfer learning strategies to boost 

model robustness. Exploring ensemble methods or attention-

based CNNs to enhance classification accuracy and 

generalizability. It is expected that these strategies will result in 

models that are both dependable and suitable for clinical use in 

the early identification of cervical cancer using colposcopy 

images. Despite the promising result, further improvements in 

data quantity and model optimization are essential before 

clinical implementation can be considered. 
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