

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 03, PP 349-356

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i3.2387, Copyright ©2025

Submitted : Mey 20, 2025, Revised : June 17, 2025, Accepted : June 20, 2025, Published : July 28, 2025

349

Job Vacancy Recommendation System Using Jaccard

Method on Graph Database

Saiful Riza[1]*, Wahyu Fuadi[2], Yesy Afrillia[3]

Universitas Malikussaleh[1], [2], [3]

Aceh Utara

Saiful.180170101@mhs.unimal.ac.id[1], wahyu.fuadi@unimal.ac.id[2], yesyafrillia@unimal.ac.id[3]

Abstract— In the rapidly evolving digital era, recommendation

systems play a crucial role in helping users discover relevant

information aligned with their preferences. PT Nirmala Satya

Development, a company engaged in psychology and human

resource development, faces challenges in utilizing big data

consisting of 500 applicants, 500 job postings, and 500 job

applications to generate accurate and relevant job

recommendations. This study develops a job recommendation

system using the Jaccard Coefficient method to measure similarity

between users based on their job application history, implemented

within a Neo4j graph database. The system models the

relationships between entities through nodes and edges, allowing

dynamic analysis using the Cypher Query Language. Testing on 237

users demonstrated that the majority received at least one relevant

recommendation, with recall values often reaching 1.0, especially

among users who had a single job target. The system achieved

precision values ranging from 10% to 20%, which is considered

acceptable given that ten recommendations are generated per user.

The highest F1-score reached 0.33, although some users received

F1 = 0 due to limited application history or unique preferences.

Overall, the system effectively delivers personalized and efficient

job recommendations, particularly for active users. This research

also proves that combining the Jaccard Coefficient with a graph

database structure is a powerful approach to representing and

analyzing complex relationships between users and job postings in

a modern recruitment platform.

Keywords— Graph Database, Jaccard Coefficient, Neo4j,

Recommendation System

I. INTRODUCTION

In the rapidly evolving digital era, recommendation systems
have become a crucial component in helping users find
information that aligns with their needs and preferences. PT
Nirmala Satya Development, a company specializing in
psychology and human resource development, faces significant
challenges in leveraging applicant, job, and application data to
create an effective job recommendation system. Although large
amounts of data are already available, the existing system has
not yet fully optimized its potential to deliver relevant job
recommendations.

One commonly adopted approach in recommendation
systems is collaborative filtering, which is divided into two main
types: user-based and item-based. In the user-based approach,

recommendations are made based on behavioral similarities
between users, while the item-based approach relies on the
similarity between items that users have interacted with, such as
job postings they have applied to [1]. To enhance relevance in
the context of recruitment, the item-based collaborative filtering
method is deemed more suitable, as it focuses on user behavior
toward job postings.

In traditional relational databases, modeling and traversing
relationships between entities such as users, job applications,
and companies can be inefficient, especially in large-scale
systems. Graph databases like Neo4j, with their node–
relationship structures and optimized traversal mechanisms,
offer an alternative approach better suited to recommendation
systems that rely on identifying complex user–item interaction
patterns[2] [3]. With the aid of the Cypher query language,
Neo4j enables dynamic and efficient exploration of data
relationships [4], making it ideal for recommendation tasks
similar to those used by Facebook for friend suggestions or by
Amazon for product recommendations[5].

To address the challenge of matching job seekers with
relevant postings, this study develops a recommendation system
using the Jaccard Coefficient within a graph database structure.
From a dataset of 500 applicants, job postings, and applications,
237 users were selected for evaluation to ensure sufficient
interaction data. While Euclidean Distance has been used in
prior studies—such as a textbook translation system that
achieved 86.72% accuracy [6]. it is less efficient for large-scale
or sparse data due to higher computational complexity. In
contrast, the Jaccard Coefficient is better suited for such data as
it relies on simple set-based comparisons [7], making it ideal for
modeling historical job applications in recruitment platforms.

This study hypothesizes that using Jaccard similarity on a
graph-based model will yield high recall, especially for users
with consistent application histories. The system applies item-
based collaborative filtering, with similarity measured by the
Jaccard Coefficient. Data is stored in Neo4j and queried using
Cypher. Jaccard compares set intersection over union and has
proven effective in handling imbalanced data. For instance, a
study on Covid-19 hoax classification using Jaccard at k = 4
achieved 0.696 accuracy, 0.710 precision, and 0.599 F1-
score[8].

A recent study by Siregar, Pratama, and Himawan (2024)
further confirmed the effectiveness of the Jaccard method in

mailto:Saiful.180170101@mhs.unimal.ac.id
mailto:wahyu.fuadi@unimal.ac.id
mailto:yesyafrillia@unimal.ac.id

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 03, PP 349-356

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i3.2387, Copyright ©2025

Submitted : Mey 20, 2025, Revised : June 17, 2025, Accepted : June 20, 2025, Published : July 28, 2025

350

recruitment contexts. By using applicant profiles and
competencies as the basis for recommendation, the Jaccard-
based model successfully predicted potential candidates with an
accuracy of 75%, precision of 71%, recall of 62%, and an F1-
score of 67%. These findings indicate that the Jaccard
Coefficient is not only efficient but also accurate in filtering
suitable applicants based on their profiles and historical
interactions [9].

Based on this background, the present study proposes the
development of a Job Recommendation System using the
Jaccard Coefficient Method implemented on a Graph Database.
The system is designed to maximize historical data from 500
applicants, 500 job postings, and 500 applications collected by
PT Nirmala Satya Development during the 2020–2024 period.
This system is expected to provide more accurate and efficient
job recommendations, helping job seekers find positions that
match their qualifications.

II. LITERATURE REVIEW

A. Previous research

This section reviews key studies on recommendation
systems, graph databases, and Jaccard similarity.

Jennifer Florentina & Kurniawan (2023) compared
relational vs graph databases in a movie recommendation
system using Jaccard-based content filtering. Their Neo4j
implementation performed far better in latency (6–7 s) and
memory (~42 MB) compared to PostgreSQL (120–150 s,
~120 MB)[10].

Ristias et al. (2023) evaluated Cosine vs Jaccard similarity
in a content-based recommendation within an Indonesian event–
vendor platform. Cosine outperformed Jaccard (66% vs 49%
accuracy), highlighting Jaccard’s limitations in certain content-
based tasks [11], particularly with attribute-rich item
descriptions.

This study builds upon these insights by integrating Jaccard
Coefficient with Neo4j for user–job recommendations using
real application data. Unlike movie or content-based systems,
our work focuses on user–item collaborative filtering in a
recruitment setting, modeling data interactions through graph
structure for efficient similarity computation. We also
complement Jaccard-based recommendations with popularity-
based fallbacks to handle cold-start users, offering a more robust
solution in practical settings.

B. Recommendation System

A recommendation system personalizes content by
analyzing user preferences and behaviors to suggest relevant
items [12]. It uses data analysis to rank items likely to interest
users [13]. This study applies item-based collaborative filtering
using the Jaccard Coefficient to recommend similar job listings
based on user application history.

C. Job Vacancy

A job vacancy provides company-published information
about available positions, required qualifications, and
application procedures. In the job-seeking process, efficiency is
crucial. Recommendation systems can assist job seekers in
finding more relevant job postings faster and more accurately.

D. Jaccard Method

The Jaccard Coefficient measures the similarity between
two sets by dividing the number of shared elements
(intersection) by the total number of unique elements (union)
[14]. It is simple, effective for sparse data, and independent of
element frequency. However, it does not account for the order
or quantity of elements, making it less ideal for quantitative or
large identical datasets. Here is the jaccard formula:

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
 (1)

The sequence of the jaccard algorithm is as follows:

1. Start with two sets of data to compare.
2. Calculate the intersection by finding the elements that are

in set A and in set B.
3. Calculate union by combining all elements from both sets,

without duplication.
4. Calculate the Jaccard coefficient by dividing the total

intersection by the total union.

E. Graph Database

A graph database stores data in the form of nodes, edges, and
properties, using index-free adjacency to access related data
directly. This structure is ideal for modeling complex inter-data
relationships [15].

Fig. 1. Structure Database Graph

The overall structure of the graph is shown in Figure 1,
where data is modeled as nodes (entities) and relationships
(edges), enabling efficient traversal and representation of
complex connections.

F. Neo4j

Neo4j is a widely used graph database system that supports
the property graph model and Cypher query language. It
efficiently stores and traverses connected data, making it
suitable for recommendation systems, and is available in both
open-source and enterprise editions [16].

G. Cypher Query Language

Cypher is a declarative query language designed for Neo4j,
allowing expressive queries to retrieve data from a graph. With
a visual syntax based on the property graph model, Cypher uses
keywords such as MATCH, WHERE, and RETURN to describe
patterns, and supports complex data types and graph structures.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 03, PP 349-356

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i3.2387, Copyright ©2025

Submitted : Mey 20, 2025, Revised : June 17, 2025, Accepted : June 20, 2025, Published : July 28, 2025

351

H. Application Programming Interface (API)

API (Application Programming Interface) is a mechanism
that allows two or more systems, applications, or components to
connect and communicate with each other using certain
definitions or protocols [17]. An API enables communication
between applications. REST API, used in this system, operates
over HTTP with methods like GET, POST, PUT, and DELETE
to facilitate data exchange. Responses are typically in JSON
format, making REST efficient and developer-friendly.

III. RESEARCH METHODOLOGY

A. Place and Time of Research

This research was conducted at PT Nirmala Satya
Development from August 2024 to September 2024. The data
needed are applicant biodata, vacancy data and applicant
application data which are used to find job vacancy
recommendations.

B. Research Flow

The steps undertaken in this study follow the flow illustrated

in Figure 2, which outlines the sequence from data collection to

system implementation and evaluation.

Fig. 2. Research Flow

● Data collection consists of primary data in the form of
user data, job vacancies, and applications from the PT
Nirmala Satya Development website, as well as
secondary data obtained from literature such as books,
journals, and the internet related to the Jaccard
Coefficient method and graph data structures.

● Literature Review, Before conducting research, a
literature review of related research on the Jaccard
Coefficient method on graph databases was conducted.

● System design is carried out starting from designing the
overall system architecture which produces a context
diagram then a database design is carried out which
produces a graph model and the last is an interface
design that will produce a wireframe. The next stage is
system implementation, the system design that has been
made will be implemented in the coding stage using a
programming language.

● System implementation is the process of coding
applications using programming languages. The system
implementation uses Javascript (NodeJS) as the
programming language on the backend side, Cypher
Query Language as a query language to the database
and on the frontend side using the VueJS framework.

● System testing is carried out by performing the stages

of testing and debugging the program to ensure that it
runs well in accordance with the design that has been
made before.

C. Method

This research method is carried out through user data testing
at PT Nirmala Satya Development with several approaches,
namely: a focused literature review to collect references from
books and journals related to recommendation systems, Jaccard
Coefficient, and graph databases; interviews with company
parties; analysis of historical application data to understand user
behavior.

D. System scheme

Fig. 3. System scheme

As illustrated in Figure 3, the system starts by checking
whether the user already has an account; if not, the user is
directed to register, if so, the user can log in. After logging in,
the user selects and applies for a vacancy of interest. The system
then calculates the similarity between the vacancy and other
vacancies applied by other users using the Jaccard Coefficient,
then displays vacancy recommendations with the highest
similarity value.

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 03, PP 349-356

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i3.2387, Copyright ©2025

Submitted : Mey 20, 2025, Revised : June 17, 2025, Accepted : June 20, 2025, Published : July 28, 2025

352

E. Calculation Scheme of Jaccard Coefficient Method

The Jaccard similarity computation process is visualized in

Figure 4, highlighting how application histories are compared

between users to generate recommendations.

Fig. 4. Diagram Calculation Scheme of Jaccard Coefficient Method

The process starts when a user applies for a job vacancy; the
system then retrieves the user's application data and other
applicants who applied for the same vacancy. If there are no
other applicants, the process stops. If there are, the system forms
two sets of applications (user and other applicants), then
calculates the Jaccard value based on the intersection and union
comparison of the vacancies applied for. This process is
repeated until all relevant applicants are calculated, then the
system selects the highest Jaccard value and displays
recommendations for vacancies that the user has not applied for
but have high similarity.

IV. ANALYSIS AND DISCUSSION

A. System Overview

 This recommendation system uses a graph database and the
Jaccard Coefficient method to calculate the similarity of
applications and present relevant job vacancies to users..

1) System Architecture
 The flow of data communication in the system in general is
as follows:

• The user accesses the application through the VueJS
interface.

• Requests are sent by the frontend to the backend
through the API.

• The server processes the request and passes the query
to Neo4j.

• The results obtained from Neo4j are returned to the
server, and then displayed back to the user through the
interface.

The communication between system components is
depicted in Figure 5, which outlines the interactions
between frontend, backend, and the Neo4j graph database.

Fig. 5. System Architecture

2) Graph Database Structure
The database structure is built using a graph model,

consisting of three main types of nodes, namely:

• User, Nodes that represent users of the system, both as
jobseekers and employers.

Fig. 6. Node User

• Job, Node that represents job vacancy data posted by the
company.

Fig. 7. Node Job

• Company, Company nodes represent company data that

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 03, PP 349-356

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i3.2387, Copyright ©2025

Submitted : Mey 20, 2025, Revised : June 17, 2025, Accepted : June 20, 2025, Published : July 28, 2025

353

manages and posts job vacancies.

Fig. 8. Company Node

 The relationship between nodes consists of:

• APPLIED, A relation from the User node to the Job node,
indicating that the user has applied for a vacancy.

Fig. 9. Applied Relationship

• POSTED, A relation from the Company node to the Job
node, indicating that the company has posted the vacancy.

Fig. 10. Posted Relationship

• MANAGES, A relation from the User node (with the role
employer) to the Company node, indicating that the user
manages the company.

Fig. 11. Manages Relationship

3) Recommendation System Workflow

• The user logs in to the system and selects the job vacancy of
interest.

• The user applies for one of the vacancies.

• The system then searches for other users who have also
applied for the same vacancy.

• From those users, the system collects their entire application

history.

• Next, the system calculates the level of similarity between
the current user and other users using the Jaccard Coefficient
method.

• After the similarity value is obtained, the system selects
vacancies that are often applied for by users with a high
degree of similarity, but have never been applied for by the
current user

• The vacancies are then organized and displayed as
recommendations to the user.

• With this approach, the system is able to provide
recommendations that are more personalized and in
accordance with the interests of users based on the behavior
patterns of other users who have similar preferences.

4) Concept of Jaccard Calculation in the System
The Jaccard Coefficient method is used to measure the

similarity between two sets, namely vacancies applied for by
users (Set A) and other users who also applied for the same
vacancy (Set B). The system calculates the Jaccard value to
recommend other vacancies that have been applied for by
similar users, based on the similarity of applications after the
user has applied for Job X.

TABLE I. USER DATA

User Job Applied for

1 Job X

2 Job X, Job Y, Job Z

3 Job X, Job Y, Job W

4 Job X, Job Y, Job Z, Job W

 Jaccard Calculation Steps:
 Set A = {Job X}
 Calculate the Jaccard value between A and every other user
(who also applied for Job X)

a. User 2

• Set B = {Job X, Job Y, Job Z}

• Intersection = {Job X} → 1

• Union = {Job X, Job Y, Job Z} → 3

• Jaccard(A, B) = 1 / 3 = 0.33
b. User 3

• Set C = {Job X, Job Y, Job W}

• Intersection = {Job X} → 1

• Union = {Job X, Job Y, Job W} → 3

• Jaccard(A, C) = 1 / 3 = 0.33
c. User 4

• Set D = {Job X, Job Y, Job Z, Job W}

• Intersection = {Job X} → 1

• Union = {Job X, Job Y, Job Z, Job W} → 4

• Jaccard(A, D) = 1 / 4 = 0.25

TABLE II. JACCARD SCORE RESULT

User Jaccard Score

User 2 0.33

User 3 0.33

User 4 0.25

 Combine all vacancies applied for by other users (except Job
X), then sort by highest score:

• From User 2: Job Y, Job Z

• From User 3: Job Y, Job W

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 03, PP 349-356

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i3.2387, Copyright ©2025

Submitted : Mey 20, 2025, Revised : June 17, 2025, Accepted : June 20, 2025, Published : July 28, 2025

354

• From User 4: Job Y, Job Z, Job W
Calculate the frequency of occurrence:

TABLE III. RECOMMENDATION RESULTS

Job Frequency

Job Y 3

Job Z 2

Job W 2

B. System Implementation

1. Data Migration to Neo4j Graph Database
Data from PT NSD's MySQL (500 vacancies, companies,

and applicants) is migrated to Neo4j to build a graph-based
recommendation system.

• Extracting data from MySQL.

• Convert the data into Cypher Query format.

• Running the query in Neo4j to form nodes and relations.
The process of migrating tabular data into graph format

using Cypher queries is demonstrated in Figure 12.

Fig. 12. Table Migration in Cypher

2. User Interface

 The system interface is designed with responsive and

intuitive VueJS, supporting two user roles: jobseeker and

employer. Users can register, login and access pages according

to their respective roles. The vacancy list is available to all users,

but after login, the system adjusts the display: users without

application history will see popular vacancies, while those who

have applied will get recommendations based on application

similarity through Jaccard method and Neo4j graph data. The

vacancy details page displays complete information along with

an “Apply Now” option for logged-in jobseekers. Employers

have additional access to manage company profiles and post

vacancies, while all users can view company details and a list of

available vacancies.

Fig. 13. Sample Display

3. Implementation of Neo4j and Recommendation Algorithm
The backend system is built with Node.js and uses Neo4j as

a graph database to represent relationships between entities such
as users, vacancies, and companies. Data communication is
done through API, and queries are written with Cypher.

The graph structure consists of User, Job, and Company
nodes, with relations such as [:APPLIED], [:POSTED], and
[:MANAGES].

The recommendation algorithm is divided into two:

• New users: are recommended the most popular vacancies
based on the number of applicants.

• Existing users: using Jaccard Similarity to recommend
vacancies applied for by other users with similar
preferences.

C. System Testing

1. Functional Testing
TABLE IV. TEST THE SYSTEM WITH BLACK-BOX TESTING

No
Feature

Tested
Test Scenario

Expected

Result
Status

1 Registration User fills out the

form and clicks

"Register"

Account is

successfully

created and

redirected to

login page

Passed

2 Login User enters valid

email and

password

User is

redirected to the

main page

Passed

3 Apply for a

job

Jobseeker clicks

"Apply Now" on

the job detail page

[:APPLIED]

relationship is

created in Neo4j

Passed

4 Display

popular jobs

New jobseeker

accesses the

recommendation

page

System displays

10 most-applied

jobs

Passed

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 03, PP 349-356

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i3.2387, Copyright ©2025

Submitted : Mey 20, 2025, Revised : June 17, 2025, Accepted : June 20, 2025, Published : July 28, 2025

355

No
Feature

Tested
Test Scenario

Expected

Result
Status

5 Display

recommendati

ons (Jaccard)

Returning

jobseeker accesses

the

recommendation

page

System displays

10 relevant jobs

based on

similarity

Passed

6 Post a job

(Employer)

Employer fills out

the job form and

clicks "Post Job"

New job

appears in the

list and is linked

to the company

Passed

7 Manage

company

(Employer)

Employer opens

the company

management page

Can view and

edit company

profile

Passed

2. System Evaluation
Evaluation of the recommendation system was carried out

on a dataset of 237 users, each with varying levels of job
application history. The evaluation employed standard metrics:
precision, recall, and F1-score. Results showed that
approximately 80% of users received at least one relevant
recommendation, indicating the system’s ability to capture
relevant matches for the majority of users. The average
precision ranged from 10% to 20%, which is reasonable
considering that the system generates 10 recommendations per
user. Meanwhile, recall was consistently high, often reaching
1.0, particularly for users with a single or clearly defined job
target. The F1-score, which reflects the balance between
precision and recall, peaked at 0.33, indicating strong
performance in several cases. On the other hand, F1-scores of 0
occurred in users with sparse historical data or unique
application patterns, where the system lacked sufficient
information to compute meaningful similarities.

D. Discussion

The evaluation results indicate that the developed
recommendation system is generally effective in delivering
relevant job suggestions. Most of the 237 tested users received
at least one appropriate recommendation from the ten provided,
with recall values often reaching 1.0, especially among users
who had applied to a small number of jobs. This shows the
system’s ability to accurately retrieve relevant items. However,
the average precision ranged between 0.10 and 0.20, which,
although significantly higher than the 1.8% obtained through a
random recommendation baseline, still means that several of the
recommended jobs may be irrelevant to the user. This level of
precision may affect user satisfaction and suggests that future
improvements are needed to enhance recommendation quality.

A small portion of users experienced an F1-score of 0. These
cases occurred primarily due to either a lack of overlapping job
application history—where users applied to jobs that no one else
had—or due to extremely sparse interaction data, such as
applying to only a single job. In such situations, the system was
unable to calculate similarity scores, resulting in no relevant
recommendations. To address this, future versions of the system
could integrate content-based profiling or demographic
matching to provide better support for cold-start users.

Overall, the system performed reliably and consistently for
users with moderate to rich application histories. The Jaccard

Coefficient proved effective for measuring preference similarity
among users, while the use of Neo4j as a graph database allowed
for efficient modeling and traversal of user-job relationships. To
further improve system accuracy and user satisfaction, hybrid
filtering techniques, enhanced user profiling, and result ranking
strategies could be implemented. With these improvements, the
system has strong potential to support behavior-aware job
recommendation on a broader scale.

V. CONCLUSION

The results of this study show that the developed job
recommendation system is capable of providing relevant
suggestions, particularly for users with active application
histories. High recall (often reaching 1.0) was achieved in most
cases, and while average precision ranged from 10% to 20%, it
was significantly better than a random baseline. The use of the
Jaccard Coefficient successfully captured similarities in user
behavior, and the integration with Neo4j facilitated efficient
relationship modeling between users and jobs.

From a practical perspective, this system can be adopted by
small- to medium-scale recruitment platforms, especially those
with limited datasets, to enhance their matching processes
without requiring complex machine learning infrastructure. Its
lightweight, graph-based design is suitable for environments
where computing resources are constrained.

Future work includes testing the system’s scalability on
larger datasets, as well as improving recommendation accuracy
by enhancing user profiling, for example through CV parsing or
behavioral tracking. Incorporating hybrid filtering methods and
personalized ranking mechanisms also holds promise for
increasing precision and user satisfaction.

REFERENCES

[1] A. A. P. Devi and D. B. Tonara, “Rancang Bangun Recommender System

dengan Menggunakan Metode Collaborative Filtering untuk Studi Kasus

Tempat Kuliner di Surabaya,” Jurnal Informatika Dan Sistem Informasi,

pp. 102–110, 2015.

[2] F. A. Ajipradana, “Sistem Rekomendasi Film Menggunakan Algoritma

Itesm-Based Collaborative Filtering Dan Basis Data Graph,” Jurnal

Univsitas Diponegoro, 2017.

[3] Y. Liang, “Research on Personalized Recommendation System for Graph

Database,” in 2018 International Conference on Network,

Communication, Computer Engineering (NCCE 2018), Atlantis Press,

2018, pp. 1019–1023.

[4] D. Fernandes and J. Bernardino, “Graph Databases Comparison:

AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB.,”

Proceedings of the 7th International Conference on Data Science, vol. 18,

pp. 373–380, 2018.

[5] A. Ilic and M. Kabiljo, “Recommending items to more than a billion

people.” Accessed: Oct. 13, 2024. [Online]. Available:

https://engineering.fb.com/2015/06/02/core-infra/recommending-items-

to-more-than-a-billion-people/

[6] W. Fuadi, M. Maryana, and U. Zahara, “Sistem penerjemahan kitab

pelajaran akhlak ke dalam bahasa Indonesia menggunakan metode

Euclidean Distance,” TECHSI-Jurnal Teknik Informatika, vol. 11, no. 1,

pp. 92–103, 2019.

[7] S. Pawestri and Y. Suyanto, “Analisis Perbandingan Metode Similarity

untuk Kemiripan Dokumen Bahasa Indonesia pada Deteksi Kemiripan

Teks Bahasa Indonesia,” JURNAL MEDIA INFORMATIKA

BUDIDARMA, vol. 3, no. 8, pp. 1440–1450, 2024.

[8] W. Hidayat, E. Utami, A. F. Iskandar, A. D. Hartanto, and A. B. Prasetio,

“Perbandingan Performansi Model pada Algoritma K-NN terhadap

Jurnal SISFOKOM (Sistem Informasi dan Komputer), Volume 14, Nomor 03, PP 349-356

p-ISSN 2301-7988, e-ISSN 2581-0588

DOI : 10.32736/sisfokom.v14i3.2387, Copyright ©2025

Submitted : Mey 20, 2025, Revised : June 17, 2025, Accepted : June 20, 2025, Published : July 28, 2025

356

Klasifikasi Berita Fakta Hoaks Tentang Covid-19,” Edumatic: Jurnal

Pendidikan Informatika, vol. 5, no. 2, pp. 167–176, 2021.

[9] I. M. Siregar, D. Pratama, and C. Himawan, “Penggunaan Jaccard

Similarity Coefficient dalam Optimasi Proses Rekrutmen Karyawan

Berbasis Profil dan Kompetensi,” SINTECH (Science and Information

Technology) Journal, vol. 7, no. 2, pp. 101–111, 2024.

[10] J. Florentina and H. C. Kurniawan, “Perbandingan Penerapan Relational

Database Dan Graph Database Dalam Sistem Rekomendasi Film,” Jurnal

Telematika, vol. 18, no. 2, pp. 94–103, 2023.

[11] A. A. Ristias, E. D. Wahyuni, and S. F. A. Wati, “Komparasi Kinerja

Metode Cosine dan Jaccard Similarity dalam Content-Based

Recommendation Systems (CBRS) pada Aplikasi Eventhings,” Jurnal

Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, 2024.

[12] L. Sebastia, I. Garcia, E. Onaindia, and C. Guzman, “e-Tourism: a tourist

recommendation and planning application,” International Journal on

Artificial Intelligence Tools, vol. 18, no. 05, pp. 717–738, 2009.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative

filtering recommendation algorithms,” in Proceedings of the 10th

international conference on World Wide Web, 2001, pp. 285–295.

[14] S. Sunardi, A. Yudhana, and I. A. Mukaromah, “Implementasi Deteksi

Plagiarisme Menggunakan Metode N-Gram Dan Jaccard Similarity

Terhadap Algoritma Winnowing,” Transmisi: Jurnal Ilmiah Teknik

Elektro, vol. 20, no. 3, pp. 105–110, 2018.

[15] Wikipedia, “Graph database,” wikipedia.org. Accessed: May 15, 2025.

[Online]. Available:

https://upload.wikimedia.org/wikipedia/commons/3/3a/GraphDatabase_

PropertyGraph.png.

[16] N. Francis et al., “Cypher: An evolving query language for property

graphs,” in Proceedings of the 2018 international conference on

management of data, 2018, pp. 1433–1445.

[17] C. L. Rujiani, E. R. Syahputra, and S. D. Andriana, “Implementation Of

Application Programming Interface (API) Using Representational State

Transfer (REST) Architecture For Development E-Learning Unhar

Medan,” INTERNATIONAL JOURNAL OF DATA SCIENCE AND

VISUALIZATION (IJDSV), vol. 1, no. 1, 2023.

