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Abstract— In the rapidly evolving digital era, recommendation 

systems play a crucial role in helping users discover relevant 

information aligned with their preferences. PT Nirmala Satya 

Development, a company engaged in psychology and human 

resource development, faces challenges in utilizing big data 

consisting of 500 applicants, 500 job postings, and 500 job 

applications to generate accurate and relevant job 

recommendations. This study develops a job recommendation 

system using the Jaccard Coefficient method to measure similarity 

between users based on their job application history, implemented 

within a Neo4j graph database. The system models the 

relationships between entities through nodes and edges, allowing 

dynamic analysis using the Cypher Query Language. Testing on 237 

users demonstrated that the majority received at least one relevant 

recommendation, with recall values often reaching 1.0, especially 

among users who had a single job target. The system achieved 

precision values ranging from 10% to 20%, which is considered 

acceptable given that ten recommendations are generated per user. 

The highest F1-score reached 0.33, although some users received 

F1 = 0 due to limited application history or unique preferences. 

Overall, the system effectively delivers personalized and efficient 

job recommendations, particularly for active users. This research 

also proves that combining the Jaccard Coefficient with a graph 

database structure is a powerful approach to representing and 

analyzing complex relationships between users and job postings in 

a modern recruitment platform. 

Keywords— Graph Database, Jaccard Coefficient, Neo4j, 

Recommendation System 

 

I.  INTRODUCTION  

In the rapidly evolving digital era, recommendation systems 
have become a crucial component in helping users find 
information that aligns with their needs and preferences. PT 
Nirmala Satya Development, a company specializing in 
psychology and human resource development, faces significant 
challenges in leveraging applicant, job, and application data to 
create an effective job recommendation system. Although large 
amounts of data are already available, the existing system has 
not yet fully optimized its potential to deliver relevant job 
recommendations. 

One commonly adopted approach in recommendation 
systems is collaborative filtering, which is divided into two main 
types: user-based and item-based. In the user-based approach, 

recommendations are made based on behavioral similarities 
between users, while the item-based approach relies on the 
similarity between items that users have interacted with, such as 
job postings they have applied to [1]. To enhance relevance in 
the context of recruitment, the item-based collaborative filtering 
method is deemed more suitable, as it focuses on user behavior 
toward job postings. 

In traditional relational databases, modeling and traversing 
relationships between entities such as users, job applications, 
and companies can be inefficient, especially in large-scale 
systems. Graph databases like Neo4j, with their node–
relationship structures and optimized traversal mechanisms, 
offer an alternative approach better suited to recommendation 
systems that rely on identifying complex user–item interaction 
patterns[2] [3]. With the aid of the Cypher query language, 
Neo4j enables dynamic and efficient exploration of data 
relationships [4], making it ideal for recommendation tasks 
similar to those used by Facebook for friend suggestions or by 
Amazon for product recommendations[5]. 

To address the challenge of matching job seekers with 
relevant postings, this study develops a recommendation system 
using the Jaccard Coefficient within a graph database structure. 
From a dataset of 500 applicants, job postings, and applications, 
237 users were selected for evaluation to ensure sufficient 
interaction data. While Euclidean Distance has been used in 
prior studies—such as a textbook translation system that 
achieved 86.72% accuracy [6]. it is less efficient for large-scale 
or sparse data due to higher computational complexity. In 
contrast, the Jaccard Coefficient is better suited for such data as 
it relies on simple set-based comparisons [7], making it ideal for 
modeling historical job applications in recruitment platforms. 

This study hypothesizes that using Jaccard similarity on a 
graph-based model will yield high recall, especially for users 
with consistent application histories. The system applies item-
based collaborative filtering, with similarity measured by the 
Jaccard Coefficient. Data is stored in Neo4j and queried using 
Cypher. Jaccard compares set intersection over union and has 
proven effective in handling imbalanced data. For instance, a 
study on Covid-19 hoax classification using Jaccard at k = 4 
achieved 0.696 accuracy, 0.710 precision, and 0.599 F1-
score[8].  

A recent study by Siregar, Pratama, and Himawan (2024) 
further confirmed the effectiveness of the Jaccard method in 
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recruitment contexts. By using applicant profiles and 
competencies as the basis for recommendation, the Jaccard-
based model successfully predicted potential candidates with an 
accuracy of 75%, precision of 71%, recall of 62%, and an F1-
score of 67%. These findings indicate that the Jaccard 
Coefficient is not only efficient but also accurate in filtering 
suitable applicants based on their profiles and historical 
interactions [9]. 

Based on this background, the present study proposes the 
development of a Job Recommendation System using the 
Jaccard Coefficient Method implemented on a Graph Database. 
The system is designed to maximize historical data from 500 
applicants, 500 job postings, and 500 applications collected by 
PT Nirmala Satya Development during the 2020–2024 period. 
This system is expected to provide more accurate and efficient 
job recommendations, helping job seekers find positions that 
match their qualifications. 

II. LITERATURE REVIEW 

A. Previous research 

This section reviews key studies on recommendation 
systems, graph databases, and Jaccard similarity. 

Jennifer Florentina & Kurniawan (2023) compared 
relational vs graph databases in a movie recommendation 
system using Jaccard-based content filtering. Their Neo4j 
implementation performed far better in latency (6–7 s) and 
memory (~42 MB) compared to PostgreSQL (120–150 s, 
~120 MB)[10]. 

Ristias et al. (2023) evaluated Cosine vs Jaccard similarity 
in a content-based recommendation within an Indonesian event–
vendor platform. Cosine outperformed Jaccard (66% vs 49% 
accuracy), highlighting Jaccard’s limitations in certain content-
based tasks [11], particularly with attribute-rich item 
descriptions. 

This study builds upon these insights by integrating Jaccard 
Coefficient with Neo4j for user–job recommendations using 
real application data. Unlike movie or content-based systems, 
our work focuses on user–item collaborative filtering in a 
recruitment setting, modeling data interactions through graph 
structure for efficient similarity computation. We also 
complement Jaccard-based recommendations with popularity-
based fallbacks to handle cold-start users, offering a more robust 
solution in practical settings. 

B. Recommendation System 

A recommendation system personalizes content by 
analyzing user preferences and behaviors to suggest relevant 
items [12]. It uses data analysis to rank items likely to interest 
users [13]. This study applies item-based collaborative filtering 
using the Jaccard Coefficient to recommend similar job listings 
based on user application history. 

C. Job Vacancy 

A job vacancy provides company-published information 
about available positions, required qualifications, and 
application procedures. In the job-seeking process, efficiency is 
crucial. Recommendation systems can assist job seekers in 
finding more relevant job postings faster and more accurately. 

D. Jaccard Method 

The Jaccard Coefficient measures the similarity between 
two sets by dividing the number of shared elements 
(intersection) by the total number of unique elements (union) 
[14]. It is simple, effective for sparse data, and independent of 
element frequency. However, it does not account for the order 
or quantity of elements, making it less ideal for quantitative or 
large identical datasets. Here is the jaccard formula: 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
                                 (1) 

The sequence of the jaccard algorithm is as follows: 

1. Start with two sets of data to compare. 
2. Calculate the intersection by finding the elements that are 

in set A and in set B. 
3. Calculate union by combining all elements from both sets, 

without duplication. 
4. Calculate the Jaccard coefficient by dividing the total 

intersection by the total union. 
 

E. Graph Database 

A graph database stores data in the form of nodes, edges, and 
properties, using index-free adjacency to access related data 
directly. This structure is ideal for modeling complex inter-data 
relationships [15]. 

 

Fig.  1. Structure Database Graph 

The overall structure of the graph is shown in Figure 1, 
where data is modeled as nodes (entities) and relationships 
(edges), enabling efficient traversal and representation of 
complex connections. 

F. Neo4j 

Neo4j is a widely used graph database system that supports 
the property graph model and Cypher query language. It 
efficiently stores and traverses connected data, making it 
suitable for recommendation systems, and is available in both 
open-source and enterprise editions [16]. 

G. Cypher Query Language 

Cypher is a declarative query language designed for Neo4j, 
allowing expressive queries to retrieve data from a graph. With 
a visual syntax based on the property graph model, Cypher uses 
keywords such as MATCH, WHERE, and RETURN to describe 
patterns, and supports complex data types and graph structures. 
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H. Application Programming Interface (API) 

API (Application Programming Interface) is a mechanism 
that allows two or more systems, applications, or components to 
connect and communicate with each other using certain 
definitions or protocols [17]. An API enables communication 
between applications. REST API, used in this system, operates 
over HTTP with methods like GET, POST, PUT, and DELETE 
to facilitate data exchange. Responses are typically in JSON 
format, making REST efficient and developer-friendly. 

III. RESEARCH METHODOLOGY 

A. Place and Time of Research 

This research was conducted at PT Nirmala Satya 
Development from August 2024 to September 2024. The data 
needed are applicant biodata, vacancy data and applicant 
application data which are used to find job vacancy 
recommendations. 

B. Research Flow 

The steps undertaken in this study follow the flow illustrated 

in Figure 2, which outlines the sequence from data collection to 

system implementation and evaluation. 

 

Fig.  2. Research Flow 

● Data collection consists of primary data in the form of 
user data, job vacancies, and applications from the PT 
Nirmala Satya Development website, as well as 
secondary data obtained from literature such as books, 
journals, and the internet related to the Jaccard 
Coefficient method and graph data structures. 

● Literature Review, Before conducting research, a 
literature review of related research on the Jaccard 
Coefficient method on graph databases was conducted. 

● System design is carried out starting from designing the 
overall system architecture which produces a context 
diagram then a database design is carried out which 
produces a graph model and the last is an interface 
design that will produce a wireframe. The next stage is 
system implementation, the system design that has been 
made will be implemented in the coding stage using a 
programming language. 

● System implementation is the process of coding 
applications using programming languages. The system 
implementation uses Javascript (NodeJS) as the 
programming language on the backend side, Cypher 
Query Language as a query language to the database 
and on the frontend side using the VueJS framework. 

● System testing is carried out by performing the stages 

of testing and debugging the program to ensure that it 
runs well in accordance with the design that has been 
made before. 

C. Method 

This research method is carried out through user data testing 
at PT Nirmala Satya Development with several approaches, 
namely: a focused literature review to collect references from 
books and journals related to recommendation systems, Jaccard 
Coefficient, and graph databases; interviews with company 
parties; analysis of historical application data to understand user 
behavior. 

D. System scheme 

 

Fig.  3. System scheme 

As illustrated in Figure 3, the system starts by checking 
whether the user already has an account; if not, the user is 
directed to register, if so, the user can log in. After logging in, 
the user selects and applies for a vacancy of interest. The system 
then calculates the similarity between the vacancy and other 
vacancies applied by other users using the Jaccard Coefficient, 
then displays vacancy recommendations with the highest 
similarity value. 
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E. Calculation Scheme of Jaccard Coefficient Method 

The Jaccard similarity computation process is visualized in 

Figure 4, highlighting how application histories are compared 

between users to generate recommendations. 

 

Fig.  4. Diagram Calculation Scheme of Jaccard Coefficient Method 

The process starts when a user applies for a job vacancy; the 
system then retrieves the user's application data and other 
applicants who applied for the same vacancy. If there are no 
other applicants, the process stops. If there are, the system forms 
two sets of applications (user and other applicants), then 
calculates the Jaccard value based on the intersection and union 
comparison of the vacancies applied for. This process is 
repeated until all relevant applicants are calculated, then the 
system selects the highest Jaccard value and displays 
recommendations for vacancies that the user has not applied for 
but have high similarity. 

IV. ANALYSIS AND DISCUSSION 

A. System Overview  

 This recommendation system uses a graph database and the 
Jaccard Coefficient method to calculate the similarity of 
applications and present relevant job vacancies to users.. 

1) System Architecture  
 The flow of data communication in the system in general is 
as follows: 

• The user accesses the application through the VueJS 
interface. 

• Requests are sent by the frontend to the backend 
through the API. 

• The server processes the request and passes the query 
to Neo4j. 

• The results obtained from Neo4j are returned to the 
server, and then displayed back to the user through the 
interface. 

The communication between system components is 
depicted in Figure 5, which outlines the interactions 
between frontend, backend, and the Neo4j graph database. 

 

Fig.  5. System Architecture 

2) Graph Database Structure 
The database structure is built using a graph model, 

consisting of three main types of nodes, namely: 

• User, Nodes that represent users of the system, both as 
jobseekers and employers. 

 

Fig.  6. Node User 

• Job, Node that represents job vacancy data posted by the 
company. 

 

Fig.  7. Node Job 

• Company, Company nodes represent company data that 
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manages and posts job vacancies. 

 

Fig.  8. Company Node 

 The relationship between nodes consists of: 

• APPLIED, A relation from the User node to the Job node, 
indicating that the user has applied for a vacancy. 

 

Fig.  9. Applied Relationship 

• POSTED, A relation from the Company node to the Job 
node, indicating that the company has posted the vacancy. 

 

Fig.  10. Posted Relationship 

• MANAGES, A relation from the User node (with the role 
employer) to the Company node, indicating that the user 
manages the company. 

 

Fig.  11. Manages Relationship 

3) Recommendation System Workflow 

• The user logs in to the system and selects the job vacancy of 
interest. 

• The user applies for one of the vacancies. 

• The system then searches for other users who have also 
applied for the same vacancy. 

• From those users, the system collects their entire application 

history. 

• Next, the system calculates the level of similarity between 
the current user and other users using the Jaccard Coefficient 
method. 

• After the similarity value is obtained, the system selects 
vacancies that are often applied for by users with a high 
degree of similarity, but have never been applied for by the 
current user 

• The vacancies are then organized and displayed as 
recommendations to the user. 

• With this approach, the system is able to provide 
recommendations that are more personalized and in 
accordance with the interests of users based on the behavior 
patterns of other users who have similar preferences. 

4) Concept of Jaccard Calculation in the System 
The Jaccard Coefficient method is used to measure the 

similarity between two sets, namely vacancies applied for by 
users (Set A) and other users who also applied for the same 
vacancy (Set B). The system calculates the Jaccard value to 
recommend other vacancies that have been applied for by 
similar users, based on the similarity of applications after the 
user has applied for Job X. 

TABLE I. USER DATA 

User Job Applied for 

1 Job X 

2 Job X, Job Y, Job Z 

3 Job X, Job Y, Job W 

4 Job X, Job Y, Job Z, Job W 

 Jaccard Calculation Steps: 
 Set A = {Job X} 
 Calculate the Jaccard value between A and every other user 
(who also applied for Job X) 

a. User 2 

• Set B = {Job X, Job Y, Job Z} 

• Intersection = {Job X} → 1 

• Union = {Job X, Job Y, Job Z} → 3 

• Jaccard(A, B) = 1 / 3 = 0.33 
b. User 3 

• Set C = {Job X, Job Y, Job W} 

• Intersection = {Job X} → 1 

• Union = {Job X, Job Y, Job W} → 3 

• Jaccard(A, C) = 1 / 3 = 0.33 
c. User 4 

• Set D = {Job X, Job Y, Job Z, Job W} 

• Intersection = {Job X} → 1 

• Union = {Job X, Job Y, Job Z, Job W} → 4 

• Jaccard(A, D) = 1 / 4 = 0.25 
 

TABLE II. JACCARD SCORE RESULT 

User Jaccard Score 

User 2 0.33 

User 3 0.33 

User 4 0.25 

 Combine all vacancies applied for by other users (except Job 
X), then sort by highest score: 

• From User 2: Job Y, Job Z 

• From User 3: Job Y, Job W 
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• From User 4: Job Y, Job Z, Job W 
Calculate the frequency of occurrence: 

TABLE III. RECOMMENDATION RESULTS 

Job Frequency 

Job Y 3 

Job Z 2 

Job W 2 

B. System Implementation 

1. Data Migration to Neo4j Graph Database 
Data from PT NSD's MySQL (500 vacancies, companies, 

and applicants) is migrated to Neo4j to build a graph-based 
recommendation system. 

• Extracting data from MySQL. 

• Convert the data into Cypher Query format. 

• Running the query in Neo4j to form nodes and relations. 
The process of migrating tabular data into graph format 

using Cypher queries is demonstrated in Figure 12. 

 
Fig.  12. Table Migration in Cypher 

2. User Interface 

         The system interface is designed with responsive and 

intuitive VueJS, supporting two user roles: jobseeker and 

employer. Users can register, login and access pages according 

to their respective roles. The vacancy list is available to all users, 

but after login, the system adjusts the display: users without 

application history will see popular vacancies, while those who 

have applied will get recommendations based on application 

similarity through Jaccard method and Neo4j graph data. The 

vacancy details page displays complete information along with 

an “Apply Now” option for logged-in jobseekers. Employers 

have additional access to manage company profiles and post 

vacancies, while all users can view company details and a list of 

available vacancies. 

 
Fig.  13. Sample Display 

 

3. Implementation of Neo4j and Recommendation Algorithm 
The backend system is built with Node.js and uses Neo4j as 

a graph database to represent relationships between entities such 
as users, vacancies, and companies. Data communication is 
done through API, and queries are written with Cypher. 

The graph structure consists of User, Job, and Company 
nodes, with relations such as [:APPLIED], [:POSTED], and 
[:MANAGES]. 

The recommendation algorithm is divided into two: 

• New users: are recommended the most popular vacancies 
based on the number of applicants. 

• Existing users: using Jaccard Similarity to recommend 
vacancies applied for by other users with similar 
preferences. 

C. System Testing 

1. Functional Testing 
TABLE IV. TEST THE SYSTEM WITH BLACK-BOX TESTING 

No 
Feature 

Tested 
Test Scenario 

Expected 

Result 
Status 

1 Registration User fills out the 

form and clicks 

"Register" 

Account is 

successfully 

created and 

redirected to 

login page 

Passed 

2 Login User enters valid 

email and 

password 

User is 

redirected to the 

main page 

Passed 

3 Apply for a 

job 

Jobseeker clicks 

"Apply Now" on 

the job detail page 

[:APPLIED] 

relationship is 

created in Neo4j 

Passed 

4 Display 

popular jobs 

New jobseeker 

accesses the 

recommendation 

page 

System displays 

10 most-applied 

jobs 

Passed 
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No 
Feature 

Tested 
Test Scenario 

Expected 

Result 
Status 

5 Display 

recommendati

ons (Jaccard) 

Returning 

jobseeker accesses 

the 

recommendation 

page 

System displays 

10 relevant jobs 

based on 

similarity 

Passed 

6 Post a job 

(Employer) 

Employer fills out 

the job form and 

clicks "Post Job" 

New job 

appears in the 

list and is linked 

to the company 

Passed 

7 Manage 

company 

(Employer) 

Employer opens 

the company 

management page 

Can view and 

edit company 

profile 

Passed 

 

2. System Evaluation 
Evaluation of the recommendation system was carried out 

on a dataset of 237 users, each with varying levels of job 
application history. The evaluation employed standard metrics: 
precision, recall, and F1-score. Results showed that 
approximately 80% of users received at least one relevant 
recommendation, indicating the system’s ability to capture 
relevant matches for the majority of users. The average 
precision ranged from 10% to 20%, which is reasonable 
considering that the system generates 10 recommendations per 
user. Meanwhile, recall was consistently high, often reaching 
1.0, particularly for users with a single or clearly defined job 
target. The F1-score, which reflects the balance between 
precision and recall, peaked at 0.33, indicating strong 
performance in several cases. On the other hand, F1-scores of 0 
occurred in users with sparse historical data or unique 
application patterns, where the system lacked sufficient 
information to compute meaningful similarities. 

D. Discussion  

The evaluation results indicate that the developed 
recommendation system is generally effective in delivering 
relevant job suggestions. Most of the 237 tested users received 
at least one appropriate recommendation from the ten provided, 
with recall values often reaching 1.0, especially among users 
who had applied to a small number of jobs. This shows the 
system’s ability to accurately retrieve relevant items. However, 
the average precision ranged between 0.10 and 0.20, which, 
although significantly higher than the 1.8% obtained through a 
random recommendation baseline, still means that several of the 
recommended jobs may be irrelevant to the user. This level of 
precision may affect user satisfaction and suggests that future 
improvements are needed to enhance recommendation quality. 

A small portion of users experienced an F1-score of 0. These 
cases occurred primarily due to either a lack of overlapping job 
application history—where users applied to jobs that no one else 
had—or due to extremely sparse interaction data, such as 
applying to only a single job. In such situations, the system was 
unable to calculate similarity scores, resulting in no relevant 
recommendations. To address this, future versions of the system 
could integrate content-based profiling or demographic 
matching to provide better support for cold-start users. 

Overall, the system performed reliably and consistently for 
users with moderate to rich application histories. The Jaccard 

Coefficient proved effective for measuring preference similarity 
among users, while the use of Neo4j as a graph database allowed 
for efficient modeling and traversal of user-job relationships. To 
further improve system accuracy and user satisfaction, hybrid 
filtering techniques, enhanced user profiling, and result ranking 
strategies could be implemented. With these improvements, the 
system has strong potential to support behavior-aware job 
recommendation on a broader scale. 

V. CONCLUSION 

The results of this study show that the developed job 
recommendation system is capable of providing relevant 
suggestions, particularly for users with active application 
histories. High recall (often reaching 1.0) was achieved in most 
cases, and while average precision ranged from 10% to 20%, it 
was significantly better than a random baseline. The use of the 
Jaccard Coefficient successfully captured similarities in user 
behavior, and the integration with Neo4j facilitated efficient 
relationship modeling between users and jobs. 

From a practical perspective, this system can be adopted by 
small- to medium-scale recruitment platforms, especially those 
with limited datasets, to enhance their matching processes 
without requiring complex machine learning infrastructure. Its 
lightweight, graph-based design is suitable for environments 
where computing resources are constrained. 

Future work includes testing the system’s scalability on 
larger datasets, as well as improving recommendation accuracy 
by enhancing user profiling, for example through CV parsing or 
behavioral tracking. Incorporating hybrid filtering methods and 
personalized ranking mechanisms also holds promise for 
increasing precision and user satisfaction. 
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