Implementation of Data Mining to Predict Student Study Period with Decision Tree Algorithm (C4.5)
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Abstract— Graduating on time is what every student wants to accomplish in college. Students of Prof. Dr. Hamka Muhammadiyah University are one of those who have this dream. However, in many cases, students have difficulty in knowing the most important factors in achieving on-time graduation. A prediction analysis is needed to provide information about the student's graduation study period. Implementation of data mining is applied to this analysis, namely the classification function of the decision tree (C4.5) algorithm using RapidMiner tools. The methodology for implementing data mining follows the stages of Knowledge Discovery In Database (KDD), beginning with data collection, pre-processing, transformation, data mining, and evaluation. The achievements of the research are in the form of visualization and decision tree rules which provide information that the most influential factor in determining the student's study period is GPA. There is other information, namely, students graduated on time (≤4 years) amounted to 170 or 54.5% and students did not graduate on time (>4 years) amounted to 142 or 45.6%. Testing the performance of decision tree (C4.5) utilizing confusion matrix through RapidMiner tools resulted in accuracy reaching 83.87%, with precision of 87.50% and recall of 91.18%. Provides evidence that the decision tree algorithm (C4.5) has optimal performance to provide valuable information about predicting student graduation in order to increase student enrollment with the right study period.
Keywords— Decision Tree, C4.5 Algorithm, Prediction, Study Period, RapidMiner 

I. Introduction
The University of  Muhammadiyah Prof. DR. Hamka is a private university (PU) that has the vision and mission to produce outstanding graduates in both spiritual and academic intelligence. Based on this vision and mission, the university always provides professionalism and quality in every lesson. The goal is for students to develop their excellent competencies in the subjects they study and to graduate in a very timely manner [1]. Graduating on time has important functions for students, such as saving tuition fees and getting ready to enter the workforce more quickly. In addition, the importance of graduating on time is also related to the accreditation evaluation of the university [2], this can motivate universities to evaluate the development of students during the college term through the academic system and the support of lecturers. There is a need for information regarding student graduation based on academic data, which can be utilized to generate new knowledge, this will enable PU to better understand the conditions surrounding students' graduation [3]. As an educational institution, it should be able to manage data to enhance decision making, especially for the benefit of students [4]. 
According to the background explanation, data mining can be applied to predict the study period of PU students, particularly in the Faculty of Industrial Technology and Informatics (FTII). Data mining is the study of extracting useful knowledge from data, and the resulting insights have a significant impact on decision making [5]. The main goal of data mining is to identify meaningful data correlations and extract valuable new information using statistical techniques [6]. Data mining is an element of Knowledge Discovery in Databases (KDD) methods. KDD refers to a series of steps to identify valuable, easily understood information from data that was previously large in scale and high in complexity. In general, the KDD process, which is the basis of data mining, is data collection, pre-processing/cleaning, transformation, data mining and evaluation [7]. Data mining is categorized into description, estimation, prediction, classification, and clustering. One technique that is always used for predicting student graduation is classification [8]. Classification is a data analysis technique applied to group data into categories based on certain attributes. The classification process includes the following stages, the learning phase (training phase) where classification algorithms are applied to the training data to create classification rules which are then used to classify new data. The second stage is classification, with testing data that serves for accuracy calculation [9]. Various analytical methods applied in classification can be an appropriate choice for prediction [10]. There are various classification algorithms in data mining such as decision tree, naïve bayes, support vector machine, k-nearest neighbor [11]. 

The researchers employ one of the classification methods, specifically the decision tree algorithm (C4.5). This algorithm proves to be an optimal choice for predicting students' study time due to its advantages, such as being easy to understand and interpret, handling incomplete data, and managing datasets with numerous attributes [12]. The research aims to generate information from data that has been collected, and become the basis for predictions on new data. The dataset utilized comprises the graduation records of FTII PU students. Analysis is needed through testing the performance of the previously formed decision tree model. Performance testing through the application of confusion matrix, which is generated through comparison of the predicted results of the model with the actual results of the test. Data processing and performance testing of the decision tree algorithm (C4.5) are carried out using the help of RapidMiner. This tool provides solutions in data mining analysis. In RapidMiner, various methods such as the Decision Tree (C4.5) algorithm are available and can be applied to a set of data including calculations and trials  [13]. 

There is a similar previous research conducted by Endang Etriyanti, Dedy Syamsuar, and Yesi Novaria Kunang (2020) with the title “Implementasi Data Mining Menggunakan Algoritme Naive Bayes Classifier dan C4.5 untuk Memprediksi Kelulusan Mahasiswa”. The findings of the research analysis produced information that the accuracy level of the C4.5 decision tree algorithm was 79.08% while the naïve bayes algorithm was only 78.46% [14]. Further research by Lydia Yohana Lumban Gaol, M. Safii, and Dedi Suhendro (2021) with the title "Prediksi Kelulusan Mahasiswa Stikom Tunas Bangsa Prodi Sistem Informasi Dengan Menggunakan Algoritma C4.5”. The research shows that the algorithm used is very good with an accuracy rate of 90.00% with precision 91.38% and recall 98.15% [8]. Another research by Agung Wibowo and Abdul Rohman (2022) entitled “Prediksi Predikat Kelulusan Mahasiswa Menggunakan Naive Bayes dan Decision Tree pada Universitas XYZ”. The focus of this research is to provide information about the description of students who achieve certain graduation predicates and analyze the factors that have an impact on achievement [15]. 
What makes this research different from previous studies is the utilization of distinct datasets and algorithms. In prior studies by Endang Etriyanti, Dedy Syamsuar, and Yesi Novaria Kunang (2020) and Agung Wibowo and Abdul Rohman (2022), two classification techniques were employed namely, the naïve bayes algorithm and decision tree. On the other hand, research conducted by Lydia Yohana Lumban Gaol, M. Safii, and Dedi Suhendro (2021) utilized alumni datasets as training data and final year student data as test data. The current research specifically employs a singular classification method, namely the decision tree algorithm (C4.5), utilizing only the FTII PU alumni dataset, consisting of 312 data points as both training and test data, representing 20% of the total dataset.
II. Research Methods
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Figure 1. Stage Of The Research Method
1. Data Collection
This research uses the data of FTII PU Student Graduation in 2021-2022 as the source of information in the analysis. This is the main data obtained directly from the university database. The data collection process is done through access and official procedures set by the university. This data includes 312 data, which consists of 7 columns, containing students id, total credit courses, GPA, research, length of study and yudisium. This data will be used in the analysis to identify patterns and gain insights into the study periods of students.
TABLE I. FTII PU Student Graduation (2021-2022)
	Nama Atribut
	Jenis Data

	ID
	Integer

	Total Credit Courses
	Integer

	GPA
	Float

	Research
	Text

	Length Of Study
	Integer

	Yudisium
	Text


2. Pre-processing/Cleaning
	This stage is the process of initial preparation and data cleaning. The purpose of this process is to clean the dataset by identifying and addressing potential errors and inconsistencies in the data that may exist. This process involves several steps that are performed in pre-processing [16]:
a. Data Validation
	This step is used to detect and remove noisy data. Data validation is employed to identify inconsistent and anomalous data. If data is found that could interfere with the subsequent analysis process, it will be deleted. This process is performed manually using Microsoft Excel software.
b. Data Cleaning
	The second stage involves the data cleaning process using RapidMiner tools to enhance speed and efficiency. Various operators are employed such as the read excel operator for reading data files in xlsx format. The missing value operator to replace missing values with zeros or, alternatively, with the average value of the entire dataset. Additionally, the remove duplicates operator is applied in this process to selectively eliminate attributes considered less influential in the subsequent analysis of student graduation data, specifically the Student ID and Yudisium attributes. The data cleaning process with RapidMiner is outlined as follows:
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Figure 2. Cleaning and Select Attribute data process with RapidMiner
3. Transforming
Data transformation is an optional stage in the data mining process, which means that this stage is implemented if necessary. This stage will classify the data to categorize the data based on certain attributes [17]. In this research, transforming is used to change the data class with a certain criteria classification to facilitate understanding of a large dataset of 312 data. The data type in table 1 which is the initial data is converted into binomial and polynomial data types according to data mining rules.
TABLE II. Data Transformation
	Attribute Name
	Data Type
	Class Of Data Used

	Total Credit Courses
	Binomial
	≤ 150 Credit Courses, > 150 Credit Coruses

	GPA
	Polynomial
	Statisfactory, Very Statisfactory, Cumlaude

	Research
	Binomial
	Thesis, Publication

	Length Of Study
	Binomial
	≤ 4 Years, > 4 Years


4. Data Mining
The data mining method applied in this study is the Decision Tree, a technique with the capability to transform complex datasets into a hierarchical series of decisions, resembling a tree with branches and leaves that signify decisions and class labels. Each node in this structure represents an attribute that has been tested to make a decision [18]. In this research, using Decision Tree with the C4.5 algorithm. The C4.5 algorithm was invented through the development of the ID3 algorithm by Ross Quinlan. With a number of significant improvements, including the ability to handle missing values and noise in the dataset, simplify the interpretation of results, and produce more informative rules from the tree model formed [19]. In generating a decision tree with the C4.5 algorithm, several steps need to be taken. These steps are as follows [20]:
Calculate the Entropy of each attribute to determine the root node and other nodes that continue the formation of the decision tree, using the formula:
	         (1)
Description: 
S : Dataset 
n : Number Of Classes S 
pi : Sum Of The Proportion of Si to S

Next, obtain entropy for all attributes, with the process of calculating the gain value using the formula:
    Gain(S,A) =      (2)
Description: 
S : Dataset
A : Features
n : Number Of  Attribute Partitions 
A |Si| : Number Of Data in the i-th partition
|S| : Number Of Data S

5. Result Evaluation 
Confusion Matrix is a method implemented in the process of testing classification patterns to gain an understanding of the performance of the prediction model. Confusion Matrix is a table containing various evaluation metrics where the predicted results of the model will be compared with the actual class of the input data. Using information from the confusion matrix, researchers can measure accuracy, precision, recall F1-score and other evaluation parameters [21] [22].
TABLE III. Confusion Matrix Table
	Actual Classification
	Prediction Classification

	
	Positive
	Negative

	Positive
	True Positive (TP)
	True Negative (TN)

	Negative
	False Positive (FP)
	False Negative (FN)


                    Accuracy =  x 100%	(3)

Precision =  100% 		     (4)

Recall =  100% 		     (5)

Description [23]:
TP = The amount of positive data correctly categorized by the system.
TN = The amount of negative data correctly classified by the system.
FP = The amount of negative data misclassified by the system as positive.
FN = The amount of positive data misclassified by the system as negative.


III. Results And Discussion
In this section, the data is ready to enter the data mining stage, with the application of decision tree (C4.5) for pattern formation. The calculation of the decision tree algorithm (C4.5) uses the entropy and gain formulas to find the root node and the next node. In this research, the calculation uses Microsoft Excel software. 
A. Calculation to Find Entropy
In this study, the label is the length of study with the criteria ≤4 years and >4 years. The Entropy formula is as follows.
pi
Means:
Entropy(Total) = ( *)) 
+ (*  ))
Entropy(Total) = ( * )) + (*  ))
 = 0,994182507

TABLE IV. Total Entropy Calculation Of Data (Label)
	Total Data
	Length Of Study
	Entropy

	312
	≤ 4 Years
	> 4 Years
	0.994182507


	
	170
	142
	



	From table 4, it is known that students who graduated on time (≤4 years) amounted to 170, meaning 54.5% and students who did not graduate on time (>4 years) amounted to 142 or 45.6%. Then the entropy calculation is carried out from the entire number of cases, namely 312 data with the length of study label which results in 0.994182507. Entropy of length of study will be the basis for calculating gain on other attributes. Furthermore, looking for entropy in attributes such as GPA, Research and Total Credit Courses.

1. Entropy Calculation for GPA
	GPA is grouped into 3 categories: Satisfactory for students with GPA from 2.61 to 3.00, Very Satisfactory for students with GPA from 3.01 to 3.50 and Cumlaude for students with GPA from 3.51 to 4.00.
Entropy(GPA, Statisfactory) = ( * )) + ( *)) = 0.675607358
Entropy(GPA, Very Statisfactory) = ( * )) + ( * )) = 0.847861745
Entropy(GPA, Cumlaude) = ( * )) + (  * )) = 0.377646321
2. Entropy Calculation for Research
	The research is categorized into two groups, namely Thesis for students who graduate with thesis research and Publication for students who graduate with publication (journal) research.
Entropy(Research, Thesis) = ( * )) + ( * )) = 0.995947431
Entropy(Research, Publication) = ( * )) + ( * )) = 0

3. Entropy Calculation for Total Credit Courses
	Total Credit Courses are grouped into 2 categories, namely ≤150 credit courses for students who complete less than or equal to 150 credits. Meanwhile, the >150 credit courses category is for students who complete more than 150 credits.
Entropy(Total Credit Courses, ≤150 Credit Courses) = ( * )) + ( * )) = 0.993650712
Entropy(Total Credit Courses, >150 Credit Courses) = ( * )) + ( * )) = 0.9863991

B. Calculation to Find Gain
Gain calculation formula.
Gain(S,A) = 
1. Gain Calculation for GPA
Gain(Total, GPA) =  
= 0.994182507  ))))
= 0.273259384
2. Gain Calculation for Research
Gain(Total, Research) 
= 
= 0.994182507   0.995947431)0))
= 0.014195772

3. Gain Calculation for Credit Courses
Gain(Total, Total Credit Courses) 
=
=0.993650712) 0.9863991))
= 0.006295897

	Determining the root node involves selecting the gain with the largest value. In this case, the root node is GPA, which exhibits the highest gain of 0.273259384. The GPA attribute is divided into three partitions namely Satisfactory with entropy 0.675607358, Very Satisfactory with entropy 0.847861745, and Cumlaude with entropy 0.377646321. The stopping criterion is set at zero. In other words, this attribute no longer provides further information. Since none of the three partitions of the GPA attribute have reached zero, the decision tree process continues. However, if all entropy values on the attribute become zero, the decision tree process will stop [24]. Similarly, with the selection of the highest entropy value, which is 0.847861745 for the very satisfactory category, this value is used as the basis for calculating the total entropy in finding node 1.2. The calculation is performed in the same manner. Below is the initial display of the decision tree formation with GPA as the root node.
[image: ]
Figure 3. Initial Decision Tree

	First calculate the node for GPA (Very Satisfactory) which gets the largest gain result, namely Research and is selected to be the next node 1.2. Then, the partition with the largest entropy is Thesis to continue the decision tree node 1.3. The last node is Total Credit Courses, so the calculation for node 1 is complete.	
TABLE V. Node 1.2 Calculation Results
	Node
1.2
	Category
	Data
	≤4
Years
	>4
Years
	Entropy
	Gain

	GPA
	Very Statisfactory
	153
	111
	42
	0.847861745
	

	Research
	
	
	
	
	
	0.006099049

	
	Thesis
	151
	109
	42
	0.852911871
	

	
	Publication
	2
	2
	0
	0
	

	Total
Credit
Courses
	
	
	
	
	
	0.000228158

	
	≤150 Credit
Courses
	31
	22
	9
	0.869137581
	

	
	>150 Credit
Courses
	122
	89
	33
	0.842169458
	



TABLE VI. Node 1.3 Calculation Results
	Node 
1.3
	Category
	Data
	≤ 4 Years
	> 4 Years
	Entropy
	Gain

	Research
	Thesis
	151
	109
	42
	0.852911871
	

	Total Credit Courses
	
	
	
	
	
	0.000420544

	
	≤150 Credit Courses
	30
	21
	9
	0.881290899
	

	
	>150 Credit Courses
	121
	88
	33
	0.845350937
	



Here are the decision trees for nodes 1, 1.2, and 1.3:
[image: ]
Figure 4. Node 1 Decision Tree
The calculation of entropy and gain will be done in the same way, satisfactory partition will be used in getting node 2 and cumlaude partition to get node 3. Below is a calculation table and a picture of the completed decision tree:
TABLE VII. Node 2 Calculation Results
	Node 
2
	Category
	Data
	≤ 4 Years
	> 4 Years
	Entropy
	Gain

	GPA
	Statisfactory
	118
	21
	97
	0.675607358
	

	Research
	
	
	
	
	
	0

	
	Thesis
	118
	21
	97
	0.675607358
	

	
	Publication
	0
	0
	0
	0
	


	Total Credit Courses
	
	
	
	
	
	5,61756E-07

	
	≤150 Credit Courses
	28
	5
	23
	0.67694187
	

	
	>150 Credit Courses
	90
	16
	74
	0.67519144
	




TABLE VIII. Node 3 Calculation Results
	Node 
3
	Category
	Data
	≤ 4 Years
	> 4 Years
	Entropy
	Gain

	GPA
	Cumlaude
	41
	38
	3
	0.377646321
	

	Research
	
	
	
	
	
	0.008342604

	
	Thesis
	38
	35
	3
	0.398459274
	

	
	Publication
	3
	3
	0
	0
	


	Total Credit Courses
	
	
	
	
	
	0.118317676

	
	≤150 Credit Courses
	4
	2
	2
	1
	

	
	>150 Credit Courses
	37
	36
	1
	0.179256067
	



TABLE IX. Node 3.2 Calculation Results
	Node 3.2
	Category
	Data
	≤4
Years
	>4
Years
	Entropy
	Gain

	Total
Credit Courses
	>150 Credit Courses
	37
	36
	1
	0.1792
56067
	

	Research
	
	
	
	
	
	0

	
	Thesis
	33
	33
	0
	0
	

	
	Publication
	4
	4
	0
	0
	



[image: ]
Figure 5. Final Result Of C4.5 Algorithm Decision Tree
	The results of the decision tree model with RapidMiner for student graduation data are as follows:
[image: ]
Figure 6. Decision Tree (C4.5) Results with RapidMiner
Calculations using Microsoft Excel software with entropy and gain formulas display the same results as the results of the decision tree using RapidMiner tools. This shows that the calculations that have been done are correct according to the rules of the decision tree algorithm (C4.5).

[image: ]
Figure 7. Description Of Data Processing Results Of FTII PU Student Graduation
There is a textual description of the decision tree model formed from the C4.5 algorithm. This description shows that the decision tree algorithm (C4.5) is a good analytical technique for drawing conclusions from data that is easy to understand because it is visualized in a decision tree. Below is an explanation of the rules generated.
1. Rule 1 GPA = Cumlaude, Total Credit Courses = >150 Credit Courses and Research = Publication, then Length Of Study ≤ 4 Years.
2. Rule 2 GPA = Cumlaude, Total Credit Courses = ≤150 Credit Courses and Research = Thesis, then Length Of Study ≤ 4 Year.
3. Rule 3 GPA = Cumlaude dan Total Credit Courses = 
≤150 Credit Courses, then Length Of Study > 4 Years.
4. Rule 4 GPA = Statisfactory and Total Credit Courses = >150 Credit Courses, then Length Of Study > 4 Years.
5. Rule 5 GPA = Statisfactory and Total Credit Courses = ≤150 Credit Courses, then Length Of Study > 4 Years.
6. Rule 6 GPA = Very Statisfactory and Research = Publication, then Length Of Study ≤ 4 Years.
7. Rule 7 GPA = Very Statisfactory, Research = Thesis and Total Credit Courses = >150 Credit Courses, then Length Of Study ≤ 4 Years.
8. Rule 8 GPA = Very Statisfactory, Research = Thesis and Total Credit Courses = ≤150 Credit Courses, then Length Of Study ≤4 Years.

C. Evaluation Of Results
The performance testing analysis of the decision tree algorithm (C4.5), formed from the graduation data of FTII PU students in 2021-2022, is conducted using a confusion matrix. Various RapidMiner operators, such as the split data, are utilized to divide the data into training data (80% of the total original data) and test data (20% of the original data). The apply model operator is then employed to apply models previously trained using the training data to unlabeled data (testing data) [25]. And the last operator is performance for accuracy testing with a confusion matrix. The subsequent section outlines the accuracy testing process using RapidMiner tools.

[image: ]
Figure 8. Confusion Matrix Accuracy Process

The following are the results of the confusion matrix for calculating the accuracy of the decision tree algorithm (C4.5).

[image: ]
Figure 9. Accuracy Value Of C4.5 Decision Tree Algorithm

The results show that the accuracy of the performance of the decision tree algorithm (C4.5) for FTII PU student graduation data is 83.87%. This means that the information that has been known for predicting student graduation is good enough and can be used for decision making.

[image: ]
Figure 10. C4.5 Algorithm Vector Performance Value



IV. Conclusion
The decision tree algorithm (C4.5) which is applied to predict the duration of time or study period for FTII students at Prof. Dr. Hamka Muhammadiyah University in 2021-2022, produces information or knowledge about the most influential factor in determining student study time, namely GPA with an accuracy rate of 83.87%, precision reaching 87.50% and recall of 91.18%. Further information obtained, namely students who completed graduation on time (≤4 years) amounted to 170 or 54.5% and students who did not completed graduation on time (>4 years) amounted to 142 or 45.6%. In addition, there are 8 rules from the decision tree based on student graduation data that has been processed. Thus, the explanation of graduation prediction information will be easier to understand for universities and students. The conclusion of this research is that the prediction pattern formed through the decision tree algorithm (C4.5) has good performance in providing knowledge about student graduation. This can support universities in making decisions to increase the number of students with an on time study period and present this information to students through the academic system. Thus, students can know the factors that affect the study period and plan the lecture strategy from the beginning, aiming to achieve graduation according to the expected schedule.
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