Identifikasi Mutu Buah Pepaya California (Carica Papaya L.) Menggunakan Metode Jaringan Syaraf Tiruan

Authors

  • Muhammad Ezar Al Rivan STMIK Global Informatika MDP
  • Gabriela Repca Sung STMIK Global Informatika MDP

DOI:

https://doi.org/10.32736/sisfokom.v10i1.1105

Keywords:

Artificial Neural Network, Backpropagation, Identification quality, Papaya

Abstract

Papaya is one of the fruits that grows in the tropics area, one of the kinds that people’s love the most is papaya California. The quality identification of papaya California fruit can be measured using color, defect, and size. Color, defect and size extracted from image of papaya. The dataset that used in this research are 150 images papaya California. The dataset consist of 3 quality there are good, fair and low.  Identification of papaya using the backpropagation neural network method with 17 training function in each training data with 3 different neurons in the hidden layer. The best result of the test is using training function trainrp with 10 neurons is 81,33% for accuracy, 73,37% for precision, and 72% for recall, with 20 neurons is 82,67% for accuracy, 75,24% for precision, and 74% for recall, and with 25 neurons is 80,89% for accuracy, 74,42% for precision, and 71,33% for recall.

References

S. Ashari, Hortikultura aspek budidaya. Jakarta: UI-Press, 1995.

I. Y, “Budidaya Pepaya California,” 2011. .

Badan Pusat Statistik, “Statistik Tanaman Sayuran dan Buah-Buahan Semusim Indonesia 2018,” Subdirektorat Stat. Hortik., p. 101, 2018.

F. E. and S. D. Department, “Medium-term prospects for agricultural commodities (tropical fruits),” 2010. .

E. Syaefulloh and H. Purwadaria, “IDENTIFIKASI TINGKAT KETUAAN DAN KEMATANGAN PEPAYA (Carica papaya L.) IPB 1 DENGAN PENGOLAHAN CITRA DIGITAL DAN JARINGAN SYARAF TIRUAN,” Agritech J. Fak. Teknol. Pertan. UGM, vol. 27, no. 2, pp. 75–81, 2007, doi: 10.22146/agritech.9496.

M. E. Al Rivan and J. Suherman, “Penentuan Mutu Buah Pepaya California (Carica Papaya L.) Menggunakan Fuzzy Mamdani,” ELKHA, vol. 12, no. 2, p. 76, Oct. 2020, doi: 10.26418/elkha.v12i2.41164.

M. E. Al Rivan, A. Octavia, and I. Wijaya, “DESAIN MODEL FUZZY-TSUKAMOTO UNTUK PENENTUAN KUALITAS BUAH PEPAYA CALIFORNIA (CARICA PAPAYA L.) BERDASARKAN BENTUK FISIK,” Saintekom, vol. 11, no. 1, pp. 11–21, 2021.

D. A. Nugraha and A. S. Wiguna, “Klasifikasi Tingkat Roasting Biji Kopi Menggunakan Jaringan Syaraf Tiruan Backpropagation Berbasis Citra Digital,” SMARTICS J., vol. 4, no. 1, pp. 1–4, 2018, doi: 10.21067/smartics.v4i1.2165.

M. E. Al Rivan and T. Juangkara, “Identifikasi Potensi Glaukoma dan Diabetes Retinopati Melalui Citra Fundus Menggunakan Jaringan Syaraf Tiruan,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 1, pp. 43–48, Sep. 2019, doi: 10.35957/jatisi.v6i1.158.

M. E. Al Rivan and M. T. Noviardy, “Klasifikasi American Sign Language Menggunakan Ekstraksi Fitur Histogram of Oriented Gradients dan Jaringan Syaraf Tiruan,” vol. 6, pp. 442–451, 2020.

M. E. Al Rivan, N. Rachmat, and M. R. Ayustin, “Klasifikasi Jenis Kacang-Kacangan Berdasarkan Tekstur Menggunakan Jaringan Syaraf Tiruan,” J. Komput. Terap., vol. 6, no. 1, pp. 89–98, 2020, doi: doi.org/10.35143/jkt.v6i1.3546.

F. Wibowo and A. Harjoko, “Klasifikasi Mutu Pepaya Berdasarkan Ciri Tekstur GLCM Menggunakan Jaringan Saraf Tiruan,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 3, no. 2, p. 100, 2018, doi: 10.23917/khif.v3i2.4516.

Downloads

Published

2021-04-20

Issue

Section

Articles