Analisis Pengelompokan Peraturan Kementerian dengan Menggunakan K-Means Clustering

Authors

  • Resistania Anggita Putri Institut Teknologi Sepuluh Nopember
  • Nida Inayah Maghfirani Institut Teknologi Sepuluh Nopember
  • Galih Rendi Setyawan Institut Teknologi Sepuluh Nopember
  • Adam Achmad Rayhan Institut Teknologi Sepuluh Nopember
  • Nur Aini Rakhmawati Institut Teknologi Sepuluh Nopember http://orcid.org/0000-0002-1321-4564

DOI:

https://doi.org/10.32736/sisfokom.v9i2.817

Keywords:

Clustering, K-Means, Regulations, Ministry

Abstract

Thousands Ministry Regulations are found in Indonesia shows that it is a big number. These regulations are intended to focus on various fields in order to be upheld in the public interest. It has recently been discovered that the numbers are increasing and some are no longer enforced. Clustering in data mining can be used to find out the focus of problems are often discussed at each ministry. The method that will be used for clustering ministry regulation data is the K-Means algorithm. K-Means is a non-hierarchical data clustering method partitions data into clusters so data that has the same characteristics will be grouped into one cluster and data that has different characteristics will be grouped into another cluster. This research was conducted by conducting data collection, data cleaning, data processing, and visualization of the results. The results of this paper are grouping the best ministerial regulations into four clusters that have an inertia value of 405.142786991133. Cluster 0 is a collection of regulations on the empowerment of children, women, and victims of violence. Cluster 1 is a collection of regulations on environmental policies in both flora and fauna. Cluster 2 is a collection of regulations relating to science and professionalism. Cluster 3 is a collection of regulations relating to the safety of the creative economy in the field of tourism.

References

A. Budiarti dan S. Wahyuni, “HUBUNGAN TINGKAT PENERAPAN PERATURAN, LINGKUNGAN DAN FASILITAS DENGAN KONDISI BELAJAR DI ASRAMA AKBID WIRA HUSADA NUSANTARA MALANG,” BIOMED SCIENCE, vol. 5, pp. 1-6, 2017.

R. SARASWATI, “INDONESIA, PERKEMBANGAN PENGATURAN SUMBER HUKUM DAN TATA URUTAN PERATURAN PERUNDANG-UNDANGAN DI,” pp. 48-59, 28 Jan 2010.

M. Siahaan, “Uji Konstitusionalitas Peraturan Perundang-Undangan Negara Kita: Masalah dan Tantangan,” Jurnal Konstitusi, vol. 7, 2016.

N. I. Febianto dan N. D. Palasara, “Analisis Clustering K-Means Pada Data Informasi Kemiskinan Di Jawa Barat Tahun 2018,” SISFOKOM, vol. 8, 2019.

S. Khanmohammadi, N. Adibeig dan S. Shanehbandy, “An improved overlapping k-means clustering method for medical applications,” Expert Systems With Applications, vol. 67, pp. 12-18, 2016.

P. Sari, B. Pramono dan L. O. H. S. Sagala, “IMPROVE K-MEANS TERHADAP STATUS NILAI GIZI PADA BALITA,” semanTIK, vol. 3, pp. 143-148, 2017.

Jamal dan D. Yanto, “Analisis RFMdan Algoritma K-Means untuk Clustering Loyalitas Customer,” Jurnal ENERGY, vol. 9, 2019.

Y. She dan L. Zhang, “Study on Liver Visceral Manifestation of Huangdi’s Internal Classic of,” dalam International Conference on Economics, Business, Management and Corporate Social Responsibility , 2018.

INFORMATIKALOGI, “Algoritma K-Means Clustering,” 12 November 2016. [Online]. Available: https://informatikalogi.com/algoritma-k-means-clustering/. [Diakses 26 February 2020].

G. R. Styawan, A. A. Rayhan, R. A. Putri, N. I. Maghfirani dan N. A. Rakhmawati, “K-Means Clustering Peraturan Kementerian,” 8 March 2020. [Online]. Available: http://doi.org/10.5281/zenodo.3700738. [Diakses 8 March 2020].

Gustientiedina, M. H. Adiya dan Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” Jurnal Nasional Teknologi dan SIstem Informasi, vol. 5, pp. 017-024, 2019.

A. Jamal, A. Handayani, A. A. Septiandri, E. Ripmiatin dan Y. Effendi, “Dimensionality Reduction using PCA and K-Means Clustering for Breast Cancer Prediction,” Jurnal Ilmiah Teknologi Informasi, vol. 9, 2018.

U. R. Raval dan C. Jani, “Implementing & Improvisation of K-means Clustering Algorithm,” International Journal of Computer Science and Mobile Computing, vol. 5, no. 5, pp. 191-203, 2016.

Towards Data Science, “K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks,” 18 September 2018. [Online]. Available: https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a. [Diakses 8 March 2020].

L. Li, “towards data science,” 31 May 2019. [Online]. Available: https://towardsdatascience.com/k-means-clustering-with-scikit-learn-6b47a369a83c. [Diakses 8 March 2020].

Downloads

Additional Files

Published

2020-05-22

Issue

Section

Articles