Penerapan Algoritma CART Dalam Menentukan Jurusan Siswa di MAN 1 Inhil

Authors

  • Siti Monalisa UIN Suska Riau
  • Fakhri Hadi Universitas Islam Negeri Sultan Syarif Kasim Riau

DOI:

https://doi.org/10.32736/sisfokom.v9i3.932

Abstract

MAN 1 Inhil is a school that applies ministerial regulations to determine the direction of student majors at the beginning of entry, namely in class X. Determination of majors is done by considering several indicators, namely the results of academic tests, interviews, and student interest. The calculation in determining this course is very simple, namely by adding up the values of each indicator and dividing them together so that an average value is obtained. If the value is fulfilled then the student is grouped based on their interests. This can lead to errors in decision making by the school because it can be subjective because it prioritizes student interests. Therefore we need methods and algorithms to help make decisions well, the decision tree method. One algorithm that can be used is CART algorithm to classify majors with three indicators, namely Natural Sciences, Social Sciences and Religion. The results of this study indicate that the CART algorithm is able to predict correctly, from 360 data classified using the CART algorithm, it can be concluded that 71 data majoring in religion and correctly classified by CART. 144 data majoring in Natural Sciences, 119 data correctly classified and 24 data classified as IPS, and 1 data classified as religion. Of 146 data majoring in social studies, 129 were classified correctly, 16 data were classified as natural sciences. Therefore it can be concluded that CART algorithm has an 80% accuracy so that it can be used in decision making

References

Y. S. Nugroho, “Klasifikasi dan Klastering Penjurusan Siswa SMA Negeri 3 Boyolali,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 1, no. 1, p. 1, 2015.

F. Rini, N. Kahar, and Juliana, “Penerapan Algoritma K-Means Pada Pengelompokan Data Siswa Baru Berdasarkan Jurusan Di Smk Negeri 1 Kota Jambi Berbasis Web ”.,” Semin. Nas. APTIKOM, pp. 94–99, 2016.

I. M. Prabowo and Subiyanto, “Sistem Rekomendasi Penjurusan Sekolah Menengah Kejuruan Dengan Algoritma C4.5,” J. Kependidikan, vol. 1, no. 1, pp. 139–149, 2017.

F. E. Pratiwi, F. E. Pratiwi, and I. Zain, “Klasifikasi Pengangguran Terbuka Menggunakan CART (Classification and Regression Tree) di Provinsi Sulawesi Utara,” J. Sains dan Seni ITS, vol. 3, no. 1, pp. D54–D59, 2014.

Z. Mutiah, M. Bettiza, and M. R. Rathomi, “Penerapan Algoritma Classification And Regression Tree (CART) Untuk Pemilihan Jurusan SMA (STUDI KASUS : SMA Negeri 3 Bintan Kabupaten Bintan),” pp. 1–13, 2015.

Y. S. Nugroho and N. S. Haryati, “Klasifikasi dan Klastering Penjurusan Siswa SMA Negeri 3 Boyolali,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 1, no. 1, pp. 1–6, 2015.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., vol. 2, no. 1, pp. 213–219, 2014.

J. Han, K. Mao, T. Xu, J. Guo, Z. Zuo, and C. Gao, “A soil moisture estimation framework based on the CART algorithm and its application in China,” J. Hydrol., vol. 563, pp. 65–75, 2018.

S. M. Hamze-Ziabari and T. Bakhshpoori, “Improving the prediction of ground motion parameters based on an efficient bagging ensemble model of M5′ and CART algorithms,” Appl. Soft Comput. J., vol. 68, pp. 147–161, 2018.

M. M. Ghiasi, S. Zendehboudi, and A. A. Mohsenipour, “Decision tree-based diagnosis of coronary artery disease: CART model,” Comput. Methods Programs Biomed., vol. 192, p. 105400, 2020.

L. L. Doove, S. Van Buuren, and E. Dusseldorp, “Recursive partitioning for missing data imputation in the presence of interaction effects,” Comput. Stat. Data Anal., vol. 72, pp. 92–104, 2014.

Mardiani, “Penerapan Klasifikasi Dengan Algoritma Cart Untuk Prediksi Kuliah Bagi Mahasiswa Baru,” Semin. Nas. Apl. Teknol. Inf., vol. 2012, no. Snati, pp. 15–16, 2012.

F. E. dan I. Z. Pratiwi, “Klasifikasi Pengangguran Terbuka Menggunakan CART ( Classification and Regression Tree ) di Provinsi Sulawesi Utara,” J. Sains Dan Seni Pomits, vol. 3, no. 1, pp. 2337–3520, 2014.

Hariati, M. Wati, and B. Cahyono, “Penerapan Algoritma C4.5 Decision Tree pada Penentuan Penerima Program Bantuan Pemerintah Daerah Kabupaten Kutai Kartanegara,” Jurti, vol. 2, no. 1, pp. 27–36, 2018.

A. Naik and L. Samant, “Correlation Review of Classification Algorithm Using Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime,” Procedia Comput. Sci., vol. 85, no. Cms, pp. 662–668, 2016.

emadwiandr, “Sistem Rekomendasi Penjurusan Sekolah Menengah Kejuruan Dengan Algoritma C4.5,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.

Downloads

Published

2020-10-27

Issue

Section

Articles