Analisis Serangan DDoS Menggunakan Metode Jaringan Saraf Tiruan
DOI:
https://doi.org/10.32736/sisfokom.v9i3.945Keywords:
DDOS, Neural Netwok, Fixed Moving Window, Traffic Log, Intrusion Detection SystemAbstract
DDoS attack (Distribute Denial of Service) is one of the weapons of choice from hackers because it’s proven it has become threat on the internet worlds. The frequent of DDoS attacks creates a threat to internet users or servers, so that requires the introduction of several new methods that occur, one of which can use the IDS (Intrusion Detection System) method. This study took advantage of Neural Network ability to detect DDoS attack or normal based on traffic log processed statistically using Fixed Moving Window. The DDOS attack scheme uses a network topology that has been designed based on the needs and objectives that are found in monitoring network traffic. In each DDoS data and normal consist of 27 traffic log with total numbers of dataset as much as 54 data along with each testing data as much as 10 DDoS data and normal. Data collection was performed using LOIC, HOIC, and DoSHTTP with 300 seconds of traffic monitoring. The result of the Fixed Moving Window processing is the extraction value that will be put in the Neural Networks have 6 input values, one hidden layer with 300 neurons and 2 outputs which consist of a normal dataset and a DDoS dataset. The results of this study showed that Neural Network can detect DDoS and Normal in a good way with accuracy value as much as 95%.References
Hermawan, R. (2013). Analisis Konsep Dan Cara Kerja Serangan Komputer Distributed Denial of Service ( DDoS ). Faktor Exacta, 5(1), 1–14.
Muhammad, A. W. (2016). Analisis Statistik Log Jaringan Untuk Deteksi Serangan DDoS Berbasis Neural Network. ILKOM Jurnal Ilmiah, 8(3), 220. https://doi.org/10.33096/ilkom.v8i3.76.220-225.
Aziz, M., Umar, R., & Ridho, F. (2019). Implemetasi Jaringan Saraf Tiruan Untuk Mendeteksi Serangan DDoS Pada Forensik Jaringan. 5341(April), 3–9.
Sutarti, Pancaro, Adi, P., & Saputra, Fembi, I. (2018). Implementasi IDS (Intrusion Detection System) Pada Sistem Keamanan Jaringan SMAN 1 Cikeusal. Jurnal PROSISKO, 5(1). Diambil dari http://e-jurnal.lppmunsera.org/index.php/PROSISKO/article/download/584/592.
Geges, S., & Wibisono, W. (2015). Pengembangan Pencegahan Serangan Distributed Denial of Service (Ddos) Pada Sumber Daya Jaringan Dengan Integrasi Network Behavior Analysis Dan Client Puzzle. JUTI: Jurnal Ilmiah Teknologi Informasi, 13(1), 53. https://doi.org/10.12962/j24068535.v13i1.a388.
Muhammad, A. W., Riadi, I., & Sunardi, S. (2017). Deteksi Serangan DDoS Menggunakan Neural Network dengan Fungsi Fixed Moving Average Window. JISKA (Jurnal Informatika Sunan Kalijaga), 1(3), 115. https://doi.org/10.14421/jiska.2017.13-03.
Irsyadi, F. Y. (2015). Pengembangan Aplikasi Sistem Monitoring Keamanan Berbasis Linux, Menggunakan Cctv Dan Sms Gateway. 1–15.
Prathama, A. Y., Purnamasari, R. W., Ditakristy, M. L., Saepudin, D., Nhita, F., Informatika, F., … Mubarok, M. S. (2018). Model Estimasi Neural Network, Aplikasi Peramalan Tingkat Bagi Hasil Deposito Mudharabah Dengan Variabel Makroekonomi Sebagai Penentu Skripsi. Jurnal Teknosains, 2(3), 1130–1139. https://doi.org/10.1016/j.compchemeng.2005.05.025.
Burhanudin, M. F. (2018). Auto Moderasi Gambar Pornografi Menggunakan Neural Network. Universitas Mercu Buana Yogyakarta.
Wuryandari, M. D., & Afrianto, I. (2012). Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah. Komputa, 1(1), 45–51.
Ananto, R. P., Purwanto, Y., & Novianty, A. (2017). Deteksi Jenis Serangan pada Distributed Denial of Service Berbasis Clustering dan Classification Menggunakan Algoritma Minkowski Weighted K-Means dan Decision Tree. 37(3), 193–203.
Downloads
Published
Issue
Section
License
The copyright of the article that accepted for publication shall be assigned to Jurnal Sisfokom (Sistem Informasi dan Komputer) and LPPM ISB Atma Luhur as the publisher of the journal. Copyright includes the right to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Sisfokom (Sistem Informasi dan Komputer), LPPM ISB Atma Luhur, and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Sisfokom (Sistem Informasi dan Komputer) are the sole and exclusive responsibility of their respective authors.
Jurnal Sisfokom (Sistem Informasi dan Komputer) has full publishing rights to the published articles. Authors are allowed to distribute articles that have been published by sharing the link or DOI of the article. Authors are allowed to use their articles for legal purposes deemed necessary without the written permission of the journal with the initial publication notification from the Jurnal Sisfokom (Sistem Informasi dan Komputer).
The Copyright Transfer Form can be downloaded [Copyright Transfer Form Jurnal Sisfokom (Sistem Informasi dan Komputer).
This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s). After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted. The copyright form should be signed originally, and send it to the Editorial in the form of scanned document to sisfokom@atmaluhur.ac.id.