Analisis Serangan DDoS Menggunakan Metode Jaringan Saraf Tiruan

Authors

  • M. Alfine Ridho STMIK GI MDP
  • Molavi Arman AMIK MDP

DOI:

https://doi.org/10.32736/sisfokom.v9i3.945

Keywords:

DDOS, Neural Netwok, Fixed Moving Window, Traffic Log, Intrusion Detection System

Abstract

DDoS attack (Distribute Denial of Service) is one of the weapons of choice from hackers because it’s proven it has become threat on the internet worlds. The frequent of DDoS attacks creates a threat to internet users or servers, so that requires the introduction of several new methods that occur, one of which can use the IDS (Intrusion Detection System) method. This study took advantage of Neural Network ability to detect DDoS attack or normal based on traffic log processed statistically using Fixed Moving Window. The DDOS attack scheme uses a network topology that has been designed based on the needs and objectives that are found in monitoring network traffic. In each DDoS data and normal consist of 27 traffic log with total numbers of dataset as much as 54 data along with each testing data as much as 10 DDoS data and normal. Data collection was performed using LOIC, HOIC, and DoSHTTP with 300 seconds of traffic monitoring. The result of the Fixed Moving Window processing is the extraction value that will be put in the Neural Networks have 6 input values, one hidden layer with 300 neurons and 2 outputs which consist of a normal dataset and a DDoS dataset. The results of this study showed that Neural Network can detect DDoS and Normal in a good way with accuracy value as much as 95%.

References

Hermawan, R. (2013). Analisis Konsep Dan Cara Kerja Serangan Komputer Distributed Denial of Service ( DDoS ). Faktor Exacta, 5(1), 1–14.

Muhammad, A. W. (2016). Analisis Statistik Log Jaringan Untuk Deteksi Serangan DDoS Berbasis Neural Network. ILKOM Jurnal Ilmiah, 8(3), 220. https://doi.org/10.33096/ilkom.v8i3.76.220-225.

Aziz, M., Umar, R., & Ridho, F. (2019). Implemetasi Jaringan Saraf Tiruan Untuk Mendeteksi Serangan DDoS Pada Forensik Jaringan. 5341(April), 3–9.

Sutarti, Pancaro, Adi, P., & Saputra, Fembi, I. (2018). Implementasi IDS (Intrusion Detection System) Pada Sistem Keamanan Jaringan SMAN 1 Cikeusal. Jurnal PROSISKO, 5(1). Diambil dari http://e-jurnal.lppmunsera.org/index.php/PROSISKO/article/download/584/592.

Geges, S., & Wibisono, W. (2015). Pengembangan Pencegahan Serangan Distributed Denial of Service (Ddos) Pada Sumber Daya Jaringan Dengan Integrasi Network Behavior Analysis Dan Client Puzzle. JUTI: Jurnal Ilmiah Teknologi Informasi, 13(1), 53. https://doi.org/10.12962/j24068535.v13i1.a388.

Muhammad, A. W., Riadi, I., & Sunardi, S. (2017). Deteksi Serangan DDoS Menggunakan Neural Network dengan Fungsi Fixed Moving Average Window. JISKA (Jurnal Informatika Sunan Kalijaga), 1(3), 115. https://doi.org/10.14421/jiska.2017.13-03.

Irsyadi, F. Y. (2015). Pengembangan Aplikasi Sistem Monitoring Keamanan Berbasis Linux, Menggunakan Cctv Dan Sms Gateway. 1–15.

Prathama, A. Y., Purnamasari, R. W., Ditakristy, M. L., Saepudin, D., Nhita, F., Informatika, F., … Mubarok, M. S. (2018). Model Estimasi Neural Network, Aplikasi Peramalan Tingkat Bagi Hasil Deposito Mudharabah Dengan Variabel Makroekonomi Sebagai Penentu Skripsi. Jurnal Teknosains, 2(3), 1130–1139. https://doi.org/10.1016/j.compchemeng.2005.05.025.

Burhanudin, M. F. (2018). Auto Moderasi Gambar Pornografi Menggunakan Neural Network. Universitas Mercu Buana Yogyakarta.

Wuryandari, M. D., & Afrianto, I. (2012). Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah. Komputa, 1(1), 45–51.

Ananto, R. P., Purwanto, Y., & Novianty, A. (2017). Deteksi Jenis Serangan pada Distributed Denial of Service Berbasis Clustering dan Classification Menggunakan Algoritma Minkowski Weighted K-Means dan Decision Tree. 37(3), 193–203.

Downloads

Published

2020-10-12

Issue

Section

Articles