Aplikasi Asesmen Calon Debitur menggunakan Naive Bayes di Koperasi Mitra Sejahtera SMK Negeri 1 Kota Sukabumi

Authors

  • Indra Griha Tofik Isa Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.32736/sisfokom.v10i1.1013

Keywords:

Cooperative Aplication, Naive Bayes, Decision Support System

Abstract

Cooperatives have an important role in economic development in Indonesia. One of them is the Mitra Sejahtera Cooperative (KMS), which is located in Sukabumi - West Java. The problem that in KMS was the increase in bad credit during the 2015-2019 period which had an impact on decreasing cash circulation flow and income of the KMS. So that in this study focuses on making a prospective debtor assessment application by implementing the Naive Bayes algorithm to provide recommendations on the feasibility of prospective debtors who have the potential for bad credit or not. The training data used are 862 data with parameters of age, gender, loan amount, occupation, income and repayment period. The stages taken include: (1) Research Initiation, (2) Data Selection, (3) Data Pre Processing, (4) System Design, (5) System Implementation, and (6) Program Testing. In system design using structured design, while the implementation of the system uses Microsoft Visual Studio 2012 tools and MySQL database. The test results from the prospective debtor assessment application obtained an accuracy rate of 86%.

Author Biography

Indra Griha Tofik Isa, Politeknik Negeri Sriwijaya

Informatics Management Dept. State Polytechnic of Sriwijaya

References

Mahasiswa-Ekonomi-Syariah, EKONOMI KOPERASI. Pasuruan: Fakultas Agama Islam - Universitas Yudharta Pasuruan, 2018.

Kementerian-Koperasi-dan-Usaha-Kecil-dan-Mikro, “Laporan Data Koperasi Per 31 Desember 2019,” Jakarta, 2019.

I. G. T. Isa and G. P. Hartawan, “Perancangan Aplikasi Koperasi Simpan Pinjam Berbasis Web (Studi Kasus Koperasi Mitra Setia),” J. Ilm. Ilmu Ekon., vol. 5, no. 10, pp. 139–151, 2017.

M. Sabransyah, Y. N. Nasution, and F. D. T. Amijaya, “Aplikasi Metode Naive Bayes dalam Prediksi Risiko Penyakit Jantung,” J. EKSPONENSIAL, vol. 8, no. 2, pp. 111–118, 2017.

I. G. T. Isa, “Kansei Engineering Approach in Software Interface Design,” J. Sci. Innovare, vol. 1, no. 01, pp. 22–26, 2018, doi: 10.33751/jsi.v1i01.680.

I. Listiowarni, “Implementasi Naïve Bayessian dengan Laplacian Smoothing untuk Peminatan dan Lintas Minat Siswa SMAN 5 Pamekasan,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 8, no. 2, p. 124, 2019, doi: 10.32736/sisfokom.v8i2.652.

D. A. Kurniawan and Y. I. Kurniawan, “Aplikasi Prediksi Kelayakan Calon Anggota Kredit Menggunakan Algoritma Naïve Bayes,” J. Teknol. dan Manaj. Inform., vol. 4, no. 1, 2018, doi: 10.26905/jtmi.v4i1.1831.

A. P. Fadillah and B. Hardiyana, “Penerapan Naïve Bayes Classifier Untuk Pemilihan Konsentrasi Mata Kuliah,” J. Teknol. dan Inf., vol. 8, no. 2, 2018, doi: 10.34010/jati.v8i2.1039.

O. Maimon and L. Rokach, Data mining and knowledge discovery handbook, vol. 48, no. 10. 2011.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.

C. C. Aggarwal, “An Introduction to Data Classification,” in Data Classification: Algorithms and Applications, C. C. Aggarwal, Ed. New York, USA: CRC Press, 2014, pp. 1–31.

Bustami, “Penerapan Algoritma Naive Bayes untuk Mengklasifikasi Data Nasabah Asuransi,” J. Inform., vol. 8, no. 1, pp. 884–898, 2014.

I. G. T. Isa, “Aplikasi Prediksi Kelulusan Tepat Waktu dengan Algoritma Naive Bayes (Studi Kasus Program Studi Teknik Informatika UMMI),” J. Santika, vol. 7, no. 2, pp. 591–599, 2017.

Downloads

Published

2021-01-29

Issue

Section

Articles