PENERAPAN METODE ADABOOST UNTUK MENGOPTIMASI PREDIKSI PENYAKIT STROKE DENGAN ALGORITMA NAÏVE BAYES
(1) Universitas Sari Mulia
(2) Universitas Sari Mulia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
B. C. V Campbell and P. Khatri, “Stroke,” Lancet, vol. 396, no. 10244, pp. 129–142, Jul. 2020, doi: 10.1016/S0140-6736(20)31179-X.
G. J. Hankey, “Stroke,” The Lancet. 2017, doi: 10.1016/S0140-6736(16)30962-X.
T. Ouyang and S. Sabat, “Stroke,” in Radiology Fundamentals: Introduction to Imaging & Technology, 2020.
D. W. Nugraha, A. Y. E. Dodu, and N. Chandra, “Klasifikasi Penyakit Stroke Menggunakan Metode Naive Bayes Classifier (Studi Kasus Pada Rumah Sakit Umum Daerah Undata Palu),” semanTIK, vol. 3, no. 2, pp. 13–22, 2017.
J. Heo, J. G. Yoon, H. Park, Y. D. Kim, H. S. Nam, and J. H. Heo, “Machine Learning–Based Model for Prediction of Outcomes in Acute Stroke,” Stroke, vol. 50, no. 5, pp. 1263–1265, May 2019, doi: 10.1161/STROKEAHA.118.024293.
V. Adelina and R. et All, “Klasifikasi Tingkat Risiko Penyakit Stroke Menggunakan Metode GA-Fuzzy Klasifikasi Tingkat Risiko Penyakit Stroke Menggunakan Metode GA- Fuzzy Tsukamoto,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. September, pp. 3015–3021, 2018.
I. Cholissodin, F. Farisuddin, and E. Santoso, “Klasifikasi Tingkat Resiko Stroke Menggunakan Improved Particle Swarm Optimization dan Support Vector Machine,” Konf. Nas. Sist. Inf. 2016, STT Ibnu Sina, no. February, pp. 11–13, 2017.
K. Shameer, K. W. Johnson, B. S. Glicksberg, J. T. Dudley, and P. P. Sengupta, “Machine learning in cardiovascular medicine: are we there yet?,” Heart, vol. 104, no. 14, pp. 1156–1164, Jul. 2018, doi: 10.1136/heartjnl-2017-311198.
M. S. Singh and P. Choudhary, “Stroke prediction using artificial intelligence,” in 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), 2017, pp. 158–161, doi: 10.1109/IEMECON.2017.8079581.
B. Letham, C. Rudin, T. H. McCormick, and D. Madigan, “Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model,” Ann. Appl. Stat., 2015, doi: 10.1214/15-AOAS848.
D. S. Susilawati and D. Riana, “Optimization the Naive Bayes Classifier Method to diagnose diabetes Mellitus,” IAIC Trans. Sustain. Digit. Innov., vol. 1, no. 1, pp. 78–86, Nov. 2019, doi: 10.34306/itsdi.v1i1.21.
K. Vembandasamy, R. Sasipriya, and E. Deepa, “Heart Diseases Detection Using Naive Bayes Algorithm,” Int. J. Innov. Sci. Eng. Technol., 2015.
I. Lishania, R. Goejantoro, and N. Nasution, “Perbandingan Klasifikasi Metode Naive Bayes dan Metode Decision Tree Algoritma ( J48 ) pada Pasien Penderita Penyakit Stroke di RSUD Abdul Wahab Sjahranie Samarinda Comparison of the Classification for Naive Bayes Method and the Decision Tree Algorithm ( ,” vol. 10, pp. 135–142, 2019.
D. Berrar, “Bayes’ Theorem and Naive Bayes Classifier,” in Encyclopedia of Bioinformatics and Computational Biology, Elsevier, 2019, pp. 403–412.
M. Hambali, Y. Saheed, T. Oladele, and M. Gbolagade, “ADABOOST Ensemble Algorithms for Breast Cancer Classification,” J. Adv. Comput. Res., 2019.
Q. Huang, Y. Chen, L. Liu, D. Tao, and X. Li, “On Combining Biclustering Mining and AdaBoost for Breast Tumor Classification,” IEEE Trans. Knowl. Data Eng., 2020, doi: 10.1109/TKDE.2019.2891622.
DOI: https://doi.org/10.32736/sisfokom.v9i3.1023
Refbacks
- There are currently no refbacks.