PENERAPAN METODE ADABOOST UNTUK MENGOPTIMASI PREDIKSI PENYAKIT STROKE DENGAN ALGORITMA NAÏVE BAYES

Agus Byna(1*), Muhammad Basit(2)

(1) Universitas Sari Mulia
(2) Universitas Sari Mulia
(*) Corresponding Author

Abstract


Stroke is the deadliest disease in the world. Creating injury to this nervous system because of this requires special attention in its treatment. The development of the Industrial Revolution Era 4.0 technology and health science can collaborate to become something beneficial by using machine learning. Currently the benefits are used in predicting several diseases to be anticipated. In particular, stroke using adaboost optimization with naïve Bayes which can provide an accuracy of 0.986 has an Excellent classification diagnosis with 70/30 split data. The previous accuracy without using optimization is 0.976. The result of this accuracy is used by health experts in making good decisions in the field of nursing and medicine. In order to speed up the results of diagnosis to stroke patients.

Keywords


Stroke; Machine Learning; Naïve Bayes; Adaboost

Full Text:

PDF

References


B. C. V Campbell and P. Khatri, “Stroke,” Lancet, vol. 396, no. 10244, pp. 129–142, Jul. 2020, doi: 10.1016/S0140-6736(20)31179-X.

G. J. Hankey, “Stroke,” The Lancet. 2017, doi: 10.1016/S0140-6736(16)30962-X.

T. Ouyang and S. Sabat, “Stroke,” in Radiology Fundamentals: Introduction to Imaging & Technology, 2020.

D. W. Nugraha, A. Y. E. Dodu, and N. Chandra, “Klasifikasi Penyakit Stroke Menggunakan Metode Naive Bayes Classifier (Studi Kasus Pada Rumah Sakit Umum Daerah Undata Palu),” semanTIK, vol. 3, no. 2, pp. 13–22, 2017.

J. Heo, J. G. Yoon, H. Park, Y. D. Kim, H. S. Nam, and J. H. Heo, “Machine Learning–Based Model for Prediction of Outcomes in Acute Stroke,” Stroke, vol. 50, no. 5, pp. 1263–1265, May 2019, doi: 10.1161/STROKEAHA.118.024293.

V. Adelina and R. et All, “Klasifikasi Tingkat Risiko Penyakit Stroke Menggunakan Metode GA-Fuzzy Klasifikasi Tingkat Risiko Penyakit Stroke Menggunakan Metode GA- Fuzzy Tsukamoto,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. September, pp. 3015–3021, 2018.

I. Cholissodin, F. Farisuddin, and E. Santoso, “Klasifikasi Tingkat Resiko Stroke Menggunakan Improved Particle Swarm Optimization dan Support Vector Machine,” Konf. Nas. Sist. Inf. 2016, STT Ibnu Sina, no. February, pp. 11–13, 2017.

K. Shameer, K. W. Johnson, B. S. Glicksberg, J. T. Dudley, and P. P. Sengupta, “Machine learning in cardiovascular medicine: are we there yet?,” Heart, vol. 104, no. 14, pp. 1156–1164, Jul. 2018, doi: 10.1136/heartjnl-2017-311198.

M. S. Singh and P. Choudhary, “Stroke prediction using artificial intelligence,” in 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), 2017, pp. 158–161, doi: 10.1109/IEMECON.2017.8079581.

B. Letham, C. Rudin, T. H. McCormick, and D. Madigan, “Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model,” Ann. Appl. Stat., 2015, doi: 10.1214/15-AOAS848.

D. S. Susilawati and D. Riana, “Optimization the Naive Bayes Classifier Method to diagnose diabetes Mellitus,” IAIC Trans. Sustain. Digit. Innov., vol. 1, no. 1, pp. 78–86, Nov. 2019, doi: 10.34306/itsdi.v1i1.21.

K. Vembandasamy, R. Sasipriya, and E. Deepa, “Heart Diseases Detection Using Naive Bayes Algorithm,” Int. J. Innov. Sci. Eng. Technol., 2015.

I. Lishania, R. Goejantoro, and N. Nasution, “Perbandingan Klasifikasi Metode Naive Bayes dan Metode Decision Tree Algoritma ( J48 ) pada Pasien Penderita Penyakit Stroke di RSUD Abdul Wahab Sjahranie Samarinda Comparison of the Classification for Naive Bayes Method and the Decision Tree Algorithm ( ,” vol. 10, pp. 135–142, 2019.

D. Berrar, “Bayes’ Theorem and Naive Bayes Classifier,” in Encyclopedia of Bioinformatics and Computational Biology, Elsevier, 2019, pp. 403–412.

M. Hambali, Y. Saheed, T. Oladele, and M. Gbolagade, “ADABOOST Ensemble Algorithms for Breast Cancer Classification,” J. Adv. Comput. Res., 2019.

Q. Huang, Y. Chen, L. Liu, D. Tao, and X. Li, “On Combining Biclustering Mining and AdaBoost for Breast Tumor Classification,” IEEE Trans. Knowl. Data Eng., 2020, doi: 10.1109/TKDE.2019.2891622.




DOI: https://doi.org/10.32736/sisfokom.v9i3.1023

Refbacks

  • There are currently no refbacks.



Indexed By:

 



Creative Commons License
Jurnal Sisfokom (Sistem Informasi dan Komputer) has ISSN 2301-7988 and e-ISSN 2581-0588 which is published by Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) ISB Atma Luhur under a Creative Commons Attribution-ShareAlike 4.0 International License.
Web Analytics Made Easy - StatCounter