Klasifikasi Hewan Mamalia Berdasarkan Bentuk Wajah Menggunakan Fitur Histogram of Oriented dan Metode Support Vector Machine
DOI:
https://doi.org/10.32736/sisfokom.v11i1.1205Keywords:
HOG, K-Fold Cross Validation, Mammals, SVMAbstract
Mammals have several characteristics that can be distinguished, such as footprints, voice, and face shape. Mammals can be recognized. To classify the face shape of mammals, the Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) methods can be used. This study uses the LHI-Animal-Faces dataset which is taken as many as 15 species of mammals, where each type of mammal is selected 60 images and resized to 150x150 pixels. The image is converted into a grayscale image for the HOG feature extraction process. Furthermore, the classification process uses SVM. The kernels used are Linear, Polynomial, and Gaussian kernels. The testing process uses K-Fold Cross Validation. The folds used are 3-fold, 4-fold, 5-fold, 6-fold, and 10-fold. The performance of the HOG feature and the SVM method that gives the best results is the Linear kernel using 10-fold with an accuracy value of 96.55%, precision of 77.92%, and recall of 74.11%. The sequence of kernels that give the best results in this test is the Linear kernel, Polynomial kernel, and Gaussian kernel.References
S. Solari and R. J. Baker, “Mammal Species of the World: A Taxonomic and Geographic Reference by D. E. Wilson; D. M. Reeder,” J. Mammal., vol. 88, no. 3, pp. 824–830, 2007, doi: 10.1644/06-MAMM-R-422.1.
M. N. Alli and S. Viriri, “Animal identification based on footprint recognition,” IEEE Int. Conf. Adapt. Sci. Technol. ICAST, 2013, doi: 10.1109/ICASTech.2013.6707488.
M. E. Al Rivan and Y. Yohannes, “Klasifikasi Mamalia Berdasarkan Bentuk Wajah Dengan k-NN Menggunakan Fitur CAS dan HOG,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 5, no. 2, pp. 169–176, 2019, doi: 10.35957/jatisi.v5i2.139.
Y. Yohannes and M. E. Al Rivan, “Penggunaan Global Contrast Saliency dan Histogram of Oriented Gradient Sebagai Fitur untuk Klasifikasi Jenis Hewan Mamalia,” Petir, vol. 13, no. 1, pp. 80–85, 2020, doi: 10.33322/petir.v13i1.908.
Y. Yohannes, Y. P. Sari, and I. Feristyani, “Klasifikasi Wajah Hewan Mamalia Tampak Depan Menggunakan k-Nearest Neighbor Dengan Ekstraksi Fitur HOG,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 1, pp. 84–97, 2019, doi: 10.28932/jutisi.v5i1.1584.
Z. Cao, J. C. Principe, B. Ouyang, F. Dalgleish, and A. Vuorenkoski, “Marine Animal Classification Using Combined CNN and Hand-designed Image Features,” Ocean. 2015 - MTS/IEEE Washingt., pp. 2–7, 2015, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963985281&partnerID=40&md5=4898b0d41c0eec6db77a6de0fe5c9a31.
N. Manohar, Y. H. S. Kumar, and G. H. Kumar, “Supervised and unsupervised learning in animal classification,” 2016 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2016, pp. 156–161, 2016, doi: 10.1109/ICACCI.2016.7732040.
Y. H. S. Kumar, N. Manohar, and H. K. Chethan, “Animal classification system: A block based approach,” Procedia Comput. Sci., vol. 45, no. C, pp. 336–343, 2015, doi: 10.1016/j.procs.2015.03.156.
S. Taheri and Ö. Toygar, “Animal classification using facial images with score-level fusion,” IET Comput. Vis., vol. 12, no. 5, pp. 679–685, 2018, doi: 10.1049/iet-cvi.2017.0079.
F. Alharbi, A. Alharbi, and E. Kamioka, “Animal species classification using machine learning techniques,” MATEC Web Conf., vol. 277, p. 02033, 2019, doi: 10.1051/matecconf/201927702033.
F. Fandiansyah, J. Y. Sari, and I. P. Ningrum, “Pengenalan Wajah Menggunakan Metode Linear Discriminant Analysis Dan K Nearest Neighbor,” J. Inform., vol. 11, no. 2, 2017, doi: 10.26555/jifo.v11i2.a5998.
M. B. Pranoto, K. N. Ramadhani, and A. Arifianto, “Face Detection System Menggunakan Metode Histogram of Oriented Gradients ( HOG ) dan Support Vector Machine ( SVM ) Face Dtection System using Histogram of Oriented Gradients ( HOG ) Method amd Support Vector Machine ( SVM ),” e-Proceeding Eng., vol. 4, no. 3, pp. 5038–5045, 2017.
D. Amputri, S. Nadra, G. Gasim, and M. E. Al Rivan, “Perbandingan jarak potret dan resolusi kamera pada tingkat akurasi pengenalan angka kwh meter menggunakan svm,” J. Inform. Glob., vol. 8, no. 1, pp. 7–12, 2017, doi: http://dx.doi.org/10.36982/jig.v8i1.218.
L. Farsiah, T. Fuadi Abidin, and K. Munadi, “Klasifikasi Gambar berwarna menggunkan K-Nearest Neighbor dan Support Vector Machine,” no. Snastikom, pp. 1–5, 2010.
R. Brehar and S. Nedevschi, “Local information statistics of LBP and HOG for pedestrian detection,” in 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP), 2013, pp. 117–122, doi: 10.1109/ICCP.2013.6646093.
B. Santosa and A. Umam, “Data mining dan big data analytics, ed. 2,” 2018.
Z. Si and S. Zhu, “Learning Hybrid Image Templates (HIT) by Information Projection,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1354–1367, 2012.
Downloads
Published
Issue
Section
License
The copyright of the article that accepted for publication shall be assigned to Jurnal Sisfokom (Sistem Informasi dan Komputer) and LPPM ISB Atma Luhur as the publisher of the journal. Copyright includes the right to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Sisfokom (Sistem Informasi dan Komputer), LPPM ISB Atma Luhur, and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Sisfokom (Sistem Informasi dan Komputer) are the sole and exclusive responsibility of their respective authors.
Jurnal Sisfokom (Sistem Informasi dan Komputer) has full publishing rights to the published articles. Authors are allowed to distribute articles that have been published by sharing the link or DOI of the article. Authors are allowed to use their articles for legal purposes deemed necessary without the written permission of the journal with the initial publication notification from the Jurnal Sisfokom (Sistem Informasi dan Komputer).
The Copyright Transfer Form can be downloaded [Copyright Transfer Form Jurnal Sisfokom (Sistem Informasi dan Komputer).
This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s). After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted. The copyright form should be signed originally, and send it to the Editorial in the form of scanned document to sisfokom@atmaluhur.ac.id.