Sentiment Analysis Pemutusan Hubungan Kerja Akibat Pandemi Covid-19 Menggunakan Algoritma NaïveBayes Dan PSO

Authors

  • Wiyanto Wiyanto Universitas Pelita Bangsa
  • Zulita Setyaningsih Universitas Pelita Bangsa

DOI:

https://doi.org/10.32736/sisfokom.v10i3.1299

Keywords:

PHK, Sentiment Analysis, Naïve Bayes, PSO, Rapidminer

Abstract

The Pandemic Covid-19  in Indonesia in 2020 had an impact on Termination of Employment (PHK), this has received various public opinions on social media. At a time when the poverty rate is high and unemployment increases every year, it becomes a factor of public disapproval of Termination of Employment (PHK). It is necessary to classify public opinion into a negative opinion or a positive opinion on this issue. The purpose of this study is to analyze the sentiment towards layoffs to determine negative or positive opinions using the Naïve Bayes algorithm by adding feature selection. The research stages consist of data collection, text preprocessing, feature selection, and application of algorithms. The testing process in this study uses the Rapid Miner application. The test results in this study using the Naive Bayes Algorithm, the accuracy value is 93.57% and for addition to the Naïve Bayes + PSO feature selection, the accuracy value is 93.71%. The best accuracy value in sentiment analysis of layoffs in the covid-19 pandemic is the addition of the PSO feature selection in the Naïve Bayes Algorithm, which is 0.14% better.

Author Biography

Wiyanto Wiyanto, Universitas Pelita Bangsa

Prodi : Teknik Informatika

References

WHO Covid-19, “WHO Coronavirus Disease (COVID-19) Dashboard,” World Health Organization, 2020. .

P. P. Agus, “Tidak Hanya di Indonesia, PHK Massal Terjadi di Seluruh Dunia,” CNBC Indonesia, 2020. .

“Undang-undang Nomor 13 Tahun 2003 tentang Ketenagakerjaan,” no. 13, Bandung: Citra Umbara, 2003.

C. A. Gian, “Korban PHK Akibat Corona Jadi Sorotan Jokowi,” CNBC Indonesia, 2020. .

S. Liao, J. Wang, R. Yu, K. Sato, dan Z. Cheng, “ScienceDirect CNN for situations understanding based on sentiment analysis of twitter data,” Procedia Comput. Sci., vol. 111, no. 2015, hal. 376–381, 2017, doi: 10.1016/j.procs.2017.06.037.

A. Sharma dan U. Ghose, “Sentimental Analysis of Twitter Data with respect to General Elections in India,” Procedia Comput. Sci., vol. 173, no. 2019, hal. 325–334, 2020, doi: 10.1016/j.procs.2020.06.038.

T. A. Lorosae dan B. D. Prakoso, “ANALISIS SENTIMEN BERDASARKAN OPINI MASYARAKAT PADA,” hal. 25–30, 2018.

O. Somantri dan D. Apriliani, “Opinion mining on culinary food customer satisfaction using naïve bayes based-on hybrid feature selection,” Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 1, hal. 468–475, 2019, doi: 10.11591/ijeecs.v15.i1.pp468-475.

F. Zamachsari, G. V. Saragih, Susafa’ati, dan W. Gata, “Analisis Sentimen Pemindahan Ibu Kota Negara dengan Feature Selection,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 3, hal. 504–512, 2020.

Dr. Suyanto, Data Mining untuk Klasifikasi dan Klasterisasi Data, Edisi Revi. Bandung: Informatika Bandung, 2019.

W. A. Luqyana, I. Cholissodin, dan R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” vol. 2, no. 11, hal. 4704–4713, 2018.

S. Al Faraby, F. Informatika, U. Telkom, dan D. Frekuensi, “Analisis Dan Implementasi Support Vector Machine Dengan String Kernel Dalam Melakukan Klasifikasi Berita Berbahasa Indonesia Analysis and Implementation Support Vector Machine With String Kernel for Classification indonesian news,” e-Proceeding Eng., vol. 5, no. 1, hal. 1701–1710, 2018.

V. Kevin, S. Que, A. Iriani, dan H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization ( Online Transportation Sentiment Analysis Using Support Vector Machine Based on Particle Swarm Optimization ),” vol. 9, no. 2, hal. 162–170, 2020.

M. W. Fuad Nur Hasan, “ANALISIS SENTIMEN ARTIKEL BERITA TOKOH SEPAK BOLA DUNIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE DAN NAIVE BAYES BERBASIS PARTICLE SWARM OPTIMIZATION,” J. AKRAB JUARA, vol. 3, no. November, hal. 42–55, 2018.

L. Ardiani dan H. Sujaini, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak Implementation of Sentiment Analysis of Community Responses to Development in Pontianak City,” vol. 8, no. 2, hal. 44–51, 2020, doi: 10.26418/justin.v8i2.36776.

I. T. S. A. Pamungkas, “ANALISIS SENTIMEN TERHADAP TOKOH PUBLIK MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE ( SVM ),” no. 1, hal. 69–79, 2018.

Downloads

Additional Files

Published

2021-12-03

Issue

Section

Articles