Pemetaan Karakteristik Mahasiswa Penerima Kartu Indonesia Pintar Kuliah (KIP-K) menggunakan Algoritma K-Means++

Authors

DOI:

https://doi.org/10.32736/sisfokom.v11i3.1439

Keywords:

Clustering, DBI, Elbow Method, K-means , Silhouette Coefficient

Abstract

Pengetahuan baru mengenai pemetaan karakteristik mahasiswa penerima KIP-K pada perguruan tinggi dapat menggunakan penggalian data yaitu teknik clustering. Pemetaan karakteristik ini dilakukan dari hasil pengelompokan mahasiswa berdasarkan atribut akademik dan non-akademik menggunakan algoritma K-Means++ yang dapat menurunkan jumlah perulangan dalam proses pengelompokan datanya. Dengan menggunakan metode Cross-Industry Standard Process for Data Mining (CRIPS-DM) dan algoritma clustering yaitu k-means++. Dari penelitian ini, dihasilkan model clustering dengan nilai k=2 berdasarkan grafik metode elbow dengan  nilai silhouette coefficient terbesar yaitu 0.7523 dan davies bouldine index (DBI) terkecil yaitu 0.49053. Dari hasil pemetaan karakteristik mahasiswa penerima KIP-K ini, didapatkan pengetahuan yang dapat menjadi bahan pengambilan keputusan perguruan tinggi penyelenggaran dalam penyeleksian pendaftar KIP-K sehingga meminimalisir masalah akademik mahasiswa penerima KIP-K di kemudian hari.

References

M. M. Manurung and R. Rahmadi, “Identifikasi Faktor-faktor Pembentukan Karakter Mahasiswa,” JAS-PT J. Anal. Sist. Pendidik. Tinggi, vol. 1, no. 1, p. 41, 2017, doi: 10.36339/jaspt.v1i1.63.

R. Rosmini, A. Fadlil, and S. Sunardi, “Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah,” It J. Res. Dev., vol. 3, no. 1, pp. 22–31, 2018, doi: 10.25299/itjrd.2018.vol3(1).1773.

A. N. Syaharani and F. Nurani, “Kesenjangan Mutu Pendidikan Antara Desa dan Kota,” 2019.

I. Pratama and P. T. Prasetyaningrum, “Pemetaan Profil Mahasiswa Untuk Peningkatan Strategi Promosi Perguruan Tinggi Menggunakan Predictive Apriori,” J. Eksplora Inform., vol. 10, no. 2, pp. 159–166, 2021, doi: 10.30864/eksplora.v10i2.505.

D. Kurniadi, E. Abdurachman, H. L. H. S. Warnars, and W. Suparta, “The prediction of scholarship recipients in higher education using k-Nearest neighbor algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 434, no. 1, 2018, doi: 10.1088/1757-899X/434/1/012039.

A. E. Rahayu, K. Hikmah, N. Y. Ningsih, and A. C. Fauzan, “Penerapan K-Means Clustering Untuk Penentuan Klasterisasi Beasiswa Bidikmisi Mahasiswa,” Comput. Sci. Appl. Informatics, vol. 1, no. 2, pp. 82–86, 2019.

E. Buulolo, R. Syahputra, and A. Fau, “Algoritma K-Medoids Untuk Menentukan Calon Mahasiswa Yang Layak Mendapatkan Beasiswa Bidikmisi di Universitas Budi Darma,” vol. 4, pp. 797–805, 2020, doi: 10.30865/mib.v4i3.2240.

A. Hardianti and D. Agushinta R, “ANALISIS POLA MASA STUDI MAHASISWA FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA MENGGUNAKAN METODE CLUSTERING K-MEANS,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, pp. 861–868, 2020, doi: 10.25126/jtiik.202071001.

S. Astuti, Samsudin, and Triase, “Penerapan Data Mining Dalam Menentukan Penerima Beasiswa Upz (Unit Pengumpulan Zakat) Menggunakan Algoritma K-Means,” vol. 13, no. 2, 2021.

I. Irmayansyah and S. E. Triyono, “Penerapan Algoritma K-Means Untuk Pemetaan Potensi Calon Mahasiswa Baru,” Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 12, no. 2, pp. 139–150, 2022, doi: 10.36350/jbs.v12i2.139.

H. Gunawan and V. Purwayoga, “DATA MINING MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING UNTUK MENGETAHUI POTENSI PENYEBARAN VIRUS CORONA DI KOTA CIREBON,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 1, pp. 1–8, Jan. 2022, doi: 10.32736/sisfokom.v11i1.1316.

A. Darussalam, “Perbandingan Akurasi Metode Clustering Algoritma K-Means Dengan Algoritma K-Medoids Dalam Pengelompokan Data Mahasiswa Baru Untuk Strategi Promosi Program Studi Teknik Informatika Unisnu Jepara,” vol. 3, pp. 1–9, 2019.

F. N. R. F. Aziz, B. D. Setiawan, and I. Arwani, “Implementasi Algoritma K-Means untuk Klasterisasi Kinerja Akademik Mahasiswa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 6, pp. 2243–2251, 2018.

F. Nuraeni and L. Listiani, “Implementation of K-Means Algorithm with Distance of Euclidean Proximity in Clustering Cases of Violence Against Women and Children,” in 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS), 2019, no. August, pp. 162–167.

S. Surohman, L. Fabrianto, F. Riza, and N. M. Faizah, “Korelasi Antara Profil dan Nilai Akademis Siswa dengan Menggunakan Algoritma K-Means,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 4, p. 845, 2021, doi: 10.25126/jtiik.2021843034.

D. Abdullah, S. Susilo, A. S. Ahmar, R. Rusli, and R. Hidayat, “The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data,” Qual. Quant., vol. 56, no. 3, pp. 1283–1291, Jun. 2022, doi: 10.1007/s11135-021-01176-w.

F. Nuraeni, D. Tresnawati, Y. H. Agustin, and G. F. Dermawan, “OPTIMIZATION OF MARKET BASKET ANALYSIS USING CENTROID-BASED CLUSTERING ALGORITHM AND FP-GROWTH ALGORITHM OPTIMALISASI ANALISIS KERANJANG PASAR MENGGUNAKAN ALGORITMA CENTROID-BASED CLUSTERING DAN ALGORITMA FP-GROWTH,” J. Tek. Inform., vol. 3, no. 6, pp. 1581–1590, 2022, doi: https://doi.org/10.20884/1.jutif.2022.3.6.399 p-ISSN:

C. Ayudia, S. Fastaf, and Y. Yamasari, “Analisa Pemetaan Kriminalitas Kabupaten Bangkalan Menggunakan Metode K-Means dan K-Means ++,” J. Informatics Comput. Sci., vol. 03, no. 04, pp. 534–546, 2022.

A. Kapoor and A. Singhal, “A comparative study of K-Means, K-Means++ and Fuzzy C-Means clustering algorithms,” in 3rd IEEE International Conference on, 2017, pp. 1–6, doi: 10.1109/CIACT.2017.7977272.

D. T. Larose and C. D. Larose, Discovering Knowledge In Data An Introduction To Data Mining Second Edition Wiley Series On Methods And Applications In Data Mining. 2014.

E. Buulolo, Data Mining Untuk Perguruan Tinggi. Yogyakarta: DEEPUBLISHER, 2020.

M. Wahyudi, Mashita, R. Saragih, and Solikhun, Data Mining Penerapan Algoritma K-Means Clustering dengan K-Medoids Clustering. Yayasan Kita Menulis, 2020.

S. Defiyanti, M. Jajuli, and N. Rohmawati, “Optimalisasi K-Medoid Dalam Pengklasteran Mahasiswa Pelamar Beasiswa Dengan Cubic Clustering Criterion,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 211–218, 2017, doi: 10.25077/teknosi.v3i1.2017.211-218.

Y. Amri, “Metode k-means untuk clustering mahasiswa berdasarkan nilai akademik,” vol. XV, no. 02, 2021.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021.

B. Jumadi and USU, “Peningkatan Hasil Evaluasi Clustering Davies Bouldin dengan Penentuan Titik Pusat Cluster Awal K-Means,” 2018.

X. Guo, “Clustering of NASDAQ Stocks Based on Elbow Method and K-Means,” in Proceedings of the 4th International Conference on Economic Management and Green Development, 2021, pp. 80–87, doi: 10.1007/978-981-16-5359-9_11.

D.-T. Dinh, T. Fujinami, and V.-N. Huynh, “Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient,” in 20th International Symposium, KSS 2019, 2019, pp. 1–17, doi: 10.1007/978-981-15-1209-4_1.

R. Nainggolan, R. Perangin-Angin, E. Simarmata, and A. F. Tarigan, “Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) optimized by using the Elbow Method,” J. Phys. Conf. Ser., vol. 1361, no. 1, 2019, doi: 10.1088/1742-6596/1361/1/012015.

J. Hämäläinen, T. Kärkkäinen, and T. Rossi, “Improving scalable k-means++,” Algorithms, vol. 14, no. 1, pp. 1–20, 2021, doi: 10.3390/a14010006.

Downloads

Published

2023-01-25

Issue

Section

Articles