Multi-Scale Convolutional Networks untuk Pengenalan Rambu Lalu Lintas di Indonesia

Authors

  • Mutaqin Akbar Universitas Mercu Buana Yogyakarta
  • Agus Sidiq Purnomo Universitas Mercu Buana Yogyakarta
  • Supatman Supatman Universitas Mercu Buana Yogyakarta

DOI:

https://doi.org/10.32736/sisfokom.v11i3.1452

Keywords:

multi-scale convolutional networks, pengenalan rambu lalu lintas, rambu lalu lintas

Abstract

Teknologi pengenalan rambu lalu lintas yang sering disebut dengan traffic sign recognition (TSR), digunakan untuk mengenali rambu lalu lintas melalui pemanfaatan pengolahan citra. TSR sendiri dapat diaplikasikan pada sistem pembantu pengemudi, sistem pembantu pengemudi tingkat lanjut, sistem mengemudi otonom, keamanan jalan raya, pemahaman suasana perkotaan, dan pemantauan rambu untuk kepentingan perawatan. Perbaruan dari pengenalan rambu lalu lintas di Indonesia menggunakan multi-scale convolutional neural network (CNN) telah disajikan pada artikel ini. Dataset yang digunakan pada penelitian ini berjumlah 2050 data citra rambu lalu lintas yang dikelompokkan kedalam 10 kelas. Model CNN terdiri dari tiga lapisan konvolusi berukuran 3x3, tiga lapisan penggabungan (Maxpool) berukuran 2x2 dan satu lapisan fully-connected yang memanfaatkan fungsi aktivasi Softmax. Jumlah filter yang digunakan pada setiap lapisan konvolusi adalah 32. Algoritma pelatihan yang digunakan yaitu Stochastic gradient descent (SGD). Dengan menggunakan 1750 data citra latih, nilai epoch 20, dan laju pelatihan 0,005, nilai galat dan nilai akurasi yang didapatkan pada tahap pelatihan adalah masing-masing 0,0026 dan 100%. Sedangkan pada tahap pengujian, dengan 300 data citra uji, model CNN mampu memperoleh nilai galat 0,017 dan nilai akurasi mencapai 99,67%.

References

Kementerian Perhubungan, Peraturan Menteri Perhubungan tentang Rambu Lalu Lintas Nomor 13 Tahun 2014. 2014.

K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, “Three Decades of Driver Assistance Systems: Review and Future Perspectives,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 4, pp. 6–22, 2014, doi: 10.1109/MITS.2014.2336271.

T. Günthner and H. Proff, “On the way to autonomous driving: How age influences the acceptance of driver assistance systems,” Transp. Res. Part F Traffic Psychol. Behav., vol. 81, pp. 586–607, Aug. 2021, doi: 10.1016/j.trf.2021.07.006.

V. K. Kukkala, J. Tunnell, S. Pasricha, and T. Bradley, “Advanced Driver-Assistance Systems: A Path Toward Autonomous Vehicles,” IEEE Consum. Electron. Mag., vol. 7, no. 5, pp. 18–25, Sep. 2018, doi: 10.1109/MCE.2018.2828440.

A. Ziebinski, R. Cupek, D. Grzechca, and L. Chruszczyk, “Review of advanced driver assistance systems (ADAS),” Thessaloniki, Greece, 2017, p. 120002. doi: 10.1063/1.5012394.

M. M. Narkhede and N. B. Chopade, “Review of Advanced Driver Assistance Systems and Their Applications for Collision Avoidance in Urban Driving Scenario,” in Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021), vol. 256, R. Misra, R. K. Shyamasundar, A. Chaturvedi, and R. Omer, Eds. Cham: Springer International Publishing, 2022, pp. 253–267. doi: 10.1007/978-3-030-82469-3_23.

J. Levinson et al., “Towards fully autonomous driving: Systems and algorithms,” in 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, Jun. 2011, pp. 163–168. doi: 10.1109/IVS.2011.5940562.

A. Suriya Prakash, D. Vigneshwaran, R. Seenivasaga Ayyalu, and S. Jayanthi Sree, “Traffic Sign Recognition using Deeplearning for Autonomous Driverless Vehicles,” in 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, Apr. 2021, pp. 1569–1572. doi: 10.1109/ICCMC51019.2021.9418437.

O. R. Sitanggang, H. Fitriyah, and F. Utaminingrum, “Sistem Deteksi dan Pengenalan Jenis Rambu Lalu Lintas Menggunakan Metode Shape Detection Pada Raspberry Pi,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 2, no. 12, pp. 6108–6117, Dec. 2018.

T. Oddy Chrisdwianto, H. Fitriyah, and E. Rosana Widasari, “Perancangan Sistem Deteksi dan Pengenalan Rambu Peringatan Menggunakan Metode Template Matching,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 2, no. 3, pp. 1265–1274, Mar. 2018.

G. Romadhon and Murinto, “Aplikasi pengenalan citra rambu lalu lintas berbentuk lingkaran menggunakan metode jarak city-block,” J. Sarj. Tek. Inform., vol. 2, no. 2, pp. 286–294, Jun. 2014.

T. Harsono, A. Basuki, and N. Ramadijanti, “PENGENALAN GAMBAR RAMBU-RAMBU LALU LINTAS DENGAN METODE KUANTISASI RERATA,” J. Math. Nat. Sci., vol. 16, no. 3, pp. 13–18, Sep. 2006.

C. Rahmad, I. Fauziah Rahmah, and R. Andrie Asmara, “Deteksi dan pengenalan rambu lalu lintas di indonesia menggunakan RGBN dan Gabor,” in SENTRINOV, 2017, vol. 3, pp. TI13-22.

A. Triyadi and F. Utaminingrum, “Pengembangan Sistem Rekognisi Rambu Kecepataan Menggunakan Circle Hough Transform dan Convolutional Neural Network Berbasis Raspberry Pi,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 2, no. 1, pp. 56–64, Jan. 2020.

M. Akbar, “Traffic sign recognition using convolutional neural networks,” J. Teknol. Dan Sist. Komput., vol. 9, no. 2, pp. 120–125, Apr. 2021, doi: 10.14710/jtsiskom.2021.13959.

M. Akbar, “Pengenalan Rambu Lalu-lintas menggunakan Convolutional Neural Network (Studi Kasus: Rambu Lalu-lintas Indonesia),” J. Nas. Inform. Dan Teknol. Jar., vol. 6, no. 2, pp. 272–276, Mar. 2022, doi: http://dx.doi.org/10.30743/infotekjar.v6i2.4564.

Y. Le Cun et al., “Handwritten Digit Recognition: Applications of Neural Net Chips and Automatic Learning,” in Neurocomputing, F. F. Soulié and J. Hérault, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 303–318. doi: 10.1007/978-3-642-76153-9_35.

P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale Convolutional Networks,” in The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, Jul. 2011, pp. 2809–2813. doi: 10.1109/IJCNN.2011.6033589.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516, Dec. 2020, doi: 10.1007/s10462-020-09825-6.

A. P. Engelbrecht, Computational intelligence: an introduction, 2nd ed. Chichester, England ; Hoboken, NJ: John Wiley & Sons, 2007.

S. W. Smith, The scientist and engineer’s guide to digital signal processing. San Diego, Calif.: California Technical Pub., 1999.

D. Hutchison et al., “Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition,” in Artificial Neural Networks – ICANN 2010, vol. 6354, K. Diamantaras, W. Duch, and L. S. Iliadis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 92–101. doi: 10.1007/978-3-642-15825-4_10.

C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research for Deep Learning.” arXiv, Nov. 08, 2018. Accessed: Aug. 06, 2022. [Online]. Available: http://arxiv.org/abs/1811.03378

B. Zhou, C. Han, and T. Guo, “Convergence of Stochastic Gradient Descent in Deep Neural Network,” Acta Math. Appl. Sin. Engl. Ser., vol. 37, no. 1, pp. 126–136, Jan. 2021, doi: 10.1007/s10255-021-0991-2.

Downloads

Published

2022-12-01

Issue

Section

Articles