Forecasting of GPU Prices Using Transformer Method
(1) Telkom University
(2) Telkom University
(3) Telkom University
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
The Economist, “Crypto-miners are probably to blame for the graphics-chip shortage,” 2021. https://www.usnews.com/news/top-news/articles/2022-09-20/nvidia-unveils-new-gaming-chip-with-ai-features-taps-tsmc-for-manufacturing#:~:text=Nvidia%20designs%20its%20chips%20but,by%20Samsung%20Electronics%20Co%20Ltd. (accessed Apr. 25, 2022).
Z. Zhao et al., “Short-Term Load Forecasting Based on the Transformer Model,” Information (Switzerland), vol. 12, no. 12, Dec. 2021, doi: 10.3390/INFO12120516.
S. A. A. Leksono, Z. G. Prastyawan, and I. Veriawati, “Prediksi Harga Kartu Grafis Yang Dipengaruhi oleh Nilai Bitcoin,” JURNAL ILMIAH FIFO, vol. XI, no. 1, pp. 65–74, Apr. 2019.
M. Chlebus, M. Dyczko, and M. Woźniak, “Nvidia’s Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem,” Central European Economic Journal, vol. 8, no. 55, pp. 44–62, Jan. 2021, doi: 10.2478/ceej-2021-0004.
Maxime, “What is Transformer?,” 2019. https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04 (accessed Mar. 09, 2022).
E. Yalta Soplin et al., “A Comparative Study on Transformer Vs RNN in Speech Applications,” ASRU, 2019. [Online]. Available: http://www.merl.com
A. Zeyer, P. Bahar, K. Irie, R. Schluter, and H. Ney, “A Comparison of Transformer and LSTM Encoder Decoder Models for ASR,” in 2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019 - Proceedings, Dec. 2019, pp. 8–15. doi: 10.1109/ASRU46091.2019.9004025.
S. S. Pal and S. Kar, “Time series forecasting using fuzzy transformation and neural network with back propagation learning,” Journal of Intelligent and Fuzzy Systems, vol. 33, no. 1, pp. 467–477, 2017, doi: 10.3233/JIFS-161767.
S. Li et al., “Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting,” Jun. 2019.
N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case,” Jan. 2020, [Online]. Available: http://arxiv.org/abs/2001.08317
Keepa, “NVIDIA GeForce RTX 3090 Founders Edition Graphics Card,” 2019. https://keepa.com/#!product/1-B08HR6ZBYJ (accessed May 04, 2022).
A. Vaswani et al., “Attention Is All You Need,” Jun. 2017.
Han’guk T’ongsin Hakhoe, IEEE Communications Society, Denshi Jōhō Tsūshin Gakkai (Japan). Tsūshin Sosaieti, and Institute of Electrical and Electronics Engineers, RNN-based Deep Learning for One-hour ahead Load Forecasting. 2020.
H. Apaydin, H. Feizi, M. T. Sattari, M. S. Colak, S. Shamshirband, and K. W. Chau, “Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting,” Water (Switzerland), vol. 12, no. 5, May 2020, doi: 10.3390/w12051500.
D. Zhang, Q. Peng, J. Lin, D. Wang, X. Liu, and J. Zhuang, “Simulating reservoir operation using a recurrent neural network algorithm,” Water (Switzerland), vol. 11, no. 4, Apr. 2019, doi: 10.3390/w11040865.
M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.
S. R. Venna, A. Tavanaei, R. N. Gottumukkala, V. v. Raghavan, A. S. Maida, and S. Nichols, “A Novel Data-Driven Model for Real-Time Influenza Forecasting,” IEEE Access, vol. 7, pp. 7691–7701, 2019, doi: 10.1109/ACCESS.2018.2888585.
P. Schober and L. A. Schwarte, “Correlation coefficients: Appropriate use and interpretation,” Anesth Analg, vol. 126, no. 5, pp. 1763–1768, May 2018, doi: 10.1213/ANE.0000000000002864.
M. A. Istiake Sunny, M. M. S. Maswood, and A. G. Alharbi, “Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Model,” in 2nd Novel Intelligent and Leading Emerging Sciences Conference, NILES 2020, Oct. 2020, pp. 87–92. doi: 10.1109/NILES50944.2020.9257950.
A. de Myttenaere, B. Golden, B. le Grand, and F. Rossi, “Mean Absolute Percentage Error for regression models,” Neurocomputing, vol. 192, pp. 38–48, Jun. 2016, doi: 10.1016/j.neucom.2015.12.114.
DOI: https://doi.org/10.32736/sisfokom.v12i1.1569
Refbacks
- There are currently no refbacks.