Sentiment Analysis of Covid-19 Handling in Indonesia Based on Lexicon Weighting

Authors

DOI:

https://doi.org/10.32736/sisfokom.v12i1.1615

Keywords:

sentiment analysis, covid-19, lexicon weight, machine learning

Abstract

Covid-19, a contagious disease, has been classified as a global pandemic. Indonesia, as one of the ASEAN countries, has taken various measures to combat the spread of this disease. One of the government's initiatives to tackle the pandemic is the PeduliLindungi application, through which the public provides feedback on government policies. However, analyzing and comprehending public opinions in a non-subjective manner poses a challenge in objectively evaluating government services. This study aims to address this issue by conducting a sentiment analysis of Covid-19 handling in Indonesia, using a lexicon-based weighting system that includes SentiStrengthID and InSet. The decision tree (DT) machine learning algorithm is utilized to evaluate the polarity results provided by the lexicon. The results indicate that the sentiment polarity towards Covid-19 handling in Indonesia is negative based on both SentiStrengthID and InSet weights. Evaluating machine learning performance with the SentiStrengthID lexicon, the DT-entropy and DT-gini models achieved an accuracy of 82% and 83%, respectively. Similarly, evaluating machine learning performance with the InSet lexicon, the DT-entropy and DT-gini models achieved an accuracy of 81% and 82%, respectively.

References

F. Landi et al., “Post-COVID-19 global health strategies: the need for an interdisciplinary approach,” Aging Clin. Exp. Res., vol. 32, no. 8, pp. 1613–1620, 2020, doi: 10.1007/s40520-020-01616-x.

B. Liu, “Social Network Analysis,” in Web data mining: Exploring hyperlinks, contents, and usage data, vol. 1, Heidelberg: Springer, 2011, pp. 269–309. doi: 10.1007/978-3-642-19460-3.

D. Sharma, M. Sabharwal, V. Goyal, and M. Vij, “Sentiment analysis techniques for social media data: a review,” in First international conference on sustainable technologies for computational intelligence, 2020, pp. 75–90.

B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021, doi: 10.22146/jnteti.v10i2.1421.

W. Yulita et al., “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier,” J. Data Min. dan Sist. Inf., vol. 2, no. 2, pp. 1–9, 2021.

F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Heal. Inf. Manag. J., vol. 8, no. 2, pp. 100–109, 2020, [Online]. Available: https://inohim.esaunggul.ac.id/index.php/INO/article/view/223/175

A. L. Fairuz, R. D. Ramadhani, and N. A. F. Tanjung, “Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 1, pp. 42–51, 2021, doi: 10.20895/dinda.v1i1.180.

A. Prihatini, “Semantic network of the word association in the field of law,” Litera, vol. 18, no. 3, pp. 430–446, 2019.

P. Putra and S. B. Yudhoatmojo, “User Perception Analysis of Online Learning Platform ‘Zenius’ During the Coronavirus Pandemic Using Text Mining Techniques,” J. Sist. Inf., vol. 17, no. 2, pp. 33–47, 2021, doi: 10.21609/jsi.v17i2.1065.

F. Koto and G. Y. Rahmaningtyas, “InSet Lexicon: Evaluation of a Word List for Indonesian Sentiment Analysis in Microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-Janua, pp. 391–394, 2018, doi: 10.1109/IALP.2017.8300625.

A. Saiful, “Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 41–50, 2021, doi: 10.35957/jatisi.v8i1.701.

V. Chitraa and D. A. S. Davamani, “A Survey on Preprocessing Methods for Web Usage Data,” Int. J. Comput. Sci. Inf. Secur., vol. 7, no. 3, pp. 78–83, 2010, doi: 10.48550/arXiv.1004.1257.

T. B. T. Dewi, N. A. Indrawan, I. Budi, A. B. Santoso, and P. K. Putra, “Community Understanding of the Importance of Social Distancing Using Sentiment Analysis in Twitter,” in 2020 3rd International Conference on Computer and Informatics Engineering, IC2IE 2020, 2020, pp. 336–341. doi: 10.1109/IC2IE50715.2020.9274589.

C. R. Panigrahi, B. Panda, and B. Pati, “Exploratory Data Analysis and Sentiment Analysis of Drug Reviews,” Comput. y Sist., vol. 26, no. 3, pp. 1181–1189, 2022, doi: 10.13053/cys-26-3-4093.

R. K. Pearson, Exploratory data analysis using R. New York: Taylor & Francis, 2018. doi: 10.1201/9781315382111.

N. W. Prabowo, V. P. Siregar, and S. B. Agus, “Klasifikasi Habitat Bentik Berbasis Objek Dengan Algoritma Support Vector Machines Dan Decision Tree Menggunakan Citra Multispektral Spot-7 Di Pulau Harapan Dan Pulau Kelapa,” J. Ilmu dan Teknol. Kelaut. Trop., vol. 10, no. 1, pp. 123–134, 2018, doi: 10.29244/jitkt.v10i1.21670.

S. Rizky Ade Putranto, Triastuti Wuryandari, “Perbandingan Analisis Klasifikasi Antara Decision Tree Dan Support Vector Machine Multiclass,” J. Gaussian, vol. 4, no. 4, pp. 1007–1016, 2015

A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. “ O’Reilly Media, Inc.,” 2022.

P. R. Togatorop and A. Fauzi, “Klasifikasi Penggunaan Masker Wajah Menggunakan Squeezenet,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 397–406, 2022, doi: 10.35957/jatisi.v9i1.642.

S. Devella, Y. Yohannes, and F. N. Rahmawati, “Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 310–320, 2020, doi: 10.35957/jatisi.v7i2.289.

Downloads

Additional Files

Published

2023-03-14

Issue

Section

Articles