Prediction of Graduation for Students at the ISB Atma Luhur Faculty of Information Technology Using the C4.5 Algorithm

Authors

  • Ine Widyaningrum Mustama Putri Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Budi Luhur
  • Rusdah Rusdah Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Budi Luhur
  • Lis Suryadi Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Budi Luhur
  • Dian Anubhakti Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Budi Luhur

DOI:

https://doi.org/10.32736/sisfokom.v12i3.1731

Keywords:

Prediction, Graduation, Decision Tree C4.5, Early Warning

Abstract

Higher Education is a level of education after secondary education which includes diploma programs, undergraduate programs, master programs, doctoral programs, professional programs, and specialist programs organized based on the culture of the Indonesian nation. Student graduation is one of the important factors to improve university accreditation. Students who graduate above 5 years and the number of students who drop out are important indicators in determining accreditation which then causes the difficulty of accrediting a college to rise. This research aims as an early warning for students who graduate on time and graduate late from the Faculty of Information Technology, Institute of Science and Business Atma Luhur using the C4.5 decision tree algorithm by implementing the Cross-Industry Standard Process for Data Mining (CRISP- DM) method. The initial data of this research amounted to 1,015 which was taken through a query in the database of the Atma Luhur Institute of Science and Business. However, the data that will be used becomes 694 after preprocessing due to the large number of record contents that do not have a graduation year, with a total of 641 graduates graduating on time and 53 graduates graduating late. Based on the application of the model using the C4.5 decision tree algorithm and the Confusion Matrix method, the accuracy is 93.94%, Recall is 98.59%, and Precision is 95.03%. So it can be concluded that the C4.5 decision tree algorithm is the most effective algorithm for predicting student graduation, because it has a high level of accuracy.

References

A. K. Wahyudi, N. Azizah, and H. Saputro, “Data Mining Klasifikasi Kepribadian Siswa SMP Negeri 5 Jepara Menggunakan Metode Decision Tree Algoritma C4.5,” JISTER (Journal of Information System and Computer Science), vol. 2, no. 2, 2022.

R. H. Pambudi and B. D. Setiawan, “Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal,” vol. 2, no. 7, 2018.

E. Purwanto, “Prediksi Kelulusan Tepat Waktu Menggunakan Metode C4.5 Dan K-NN (Studi Kasus : Mahasiswa Program Studi S1 Ilmu Farmasi, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto),” vol. 20, no. 2, pp. 131–142, 2019.

A. F. A. Rahman, S. Sorikhi, and S. Wartulas, “Prediksi Kelulusan Mahasiswa Menggunakan Aalgoritma C4.5 (Studi Kasus Di Universitas Peradaban),” vol. 1, no. 2, 2020.

A. S. Sungae, “Optimasi Algoritma C4.5 Dalam Prediksi Web Phishing Menggunakan Seleksi Fitur Genetic Algoritma,” Paradigma, vol. XX, no. 2, pp. 27–32, 2018.

E. Elisa, “ Analisa dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Mengidentifikasi Faktor-Faktor Penyebab Kecelakaan Kerja Konstruksi PT.Arupadhatu Adisesanti,” Jurnal Online Informasi, vol. 2, no. 1, 2017.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Jurnal Edik Informatika, vol. 2.i2 (213-219), no. 2, 2016.

S. Z. Harahap, A. Nastuti “Teknik Data Mining Untuk Penentuan Paket Hemat Sembako Dan Kebutuhan Harian Dengan Menggunakan Algoritma FP-GROWTH (Studi Kasus di Ulfamart Lubuk Alung),” Jurnal Ilmiah Fakultas Sains dan Teknologi, vol. 7, no. 3, 2019.

F. Elfaladonna and A. Rahmadani, “Analisa Metode Classification-Decission Tree Dan Algoritma C.45 Untuk Memprediksi Penyakit Diabetes Dengan Menggunakan Aplikasi Rapid Miner,” SINTECH (Science and Information Technology) Journal, vol. 2, no. 1, 2019.

A. Y. Saputra and Y. Primadasa, “Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbour,” vol. 17, no. 4, 2018.

S. Bahri and A. Lubis, “Metode Klasifikasi Decision Tree Untuk Memprediksi Juara English Premier League,” vol. 2, no. 1, 2020.

P. B. N. Setio, D. R. S. Saputro, and B. Winarno, “Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” PRISMA (Prosiding Seminar Nasional Matematika), vol. 3, pp. 64–71, 2020.

R. N. Dessy et al, “Kajian Machine Learning Dengan Komparasi Klasifikasi Prediksi Dataset Tenaga Kerja Non-Aktif,” vol. 7, no. 1, 2019.

F. Satria, Zamhariri, M. Apun Syaripudin, “Prediksi Ketepatan Waktu Lulus Mahasiswa Menggunakan Algoritma C4.5 Pada Fakultas Dakwah Dan Ilmu Komunikasi UIN Raden Intan Lampung,” Jurnal Ilmiah MATRIK , vol. 22, no. 1, 2020.

V. R. Prasetyo, H. Lazuardi, A. A. Mulyono, and C. Lauw, “Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 7, no. 1, pp. 8–17, 2021.

M. O. Odja, F. J. Likadja, W. T. Ina, and S. I. Pella, “Penggunaan Microsoft Excel untuk Kemudahan Pengolahan Data Nilai Hasil Belajar Siswa,” Vol. XV, no. 2, 2021.

A. R. Putri, “Optimalisasi Penggunaan Microsoft Excel Untuk Pengolahan Nilai Raport Di SMAN 1 Ngunut Tulungagung,” vol. 3, no. 1, 2015.

M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” vol.5, no. 22, 2021.

R. Muliono, J. H. Lubis, and N. Khairina, “Analysis K-Nearest Neighbor Algorithm for Improving Prediction Student Graduation Time,” SinkrOn, vol. 4, no. 2, p. 42, 2020.

A. Rohman and A. Rufiyanto, “Implementasi Data Mining Dengan Algoritma Decision Tree C4.5 Untuk Prediksi Kelulusan Mahasiswa Di Universitas Pandanaran”, vol. 3, 2019.

N. Khasanah, A. Salim, and et al, “Prediksi Kelulusan Mahasiswa Dengan Metode Naive Bayes,” vol. 13, 2022.

D. Marlina and M. Bakrie, “Penerapan Data Mining Untuk Memprediksi Transaksi Nasabah Dengan Algoritma C4.5,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 1, 2021.

W. Musu and A. Ibrahim, H. Heriadi “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4.5,” vol. 10, no.1, 2021.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data Untuk Klasifikasi Wne Menggunakan Algoritma K-NN,” vol. 4, no. 1, 2019.

R. S. Putri and I. Waspada, “Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika,” Khazanah Informatika, vol. 4, no. 1, 2018.

Downloads

Published

2023-11-04

Issue

Section

Articles