Macine Learning Approach in Evaluating News Labels Based on Titles: Online Media Case Study

Authors

  • Rezky Yuranda Program Studi Magister Teknik Informatika Universitas Bina Darma
  • Tata Sutabri Program Studi Magister Teknik Informatika Universitas Bina Darma
  • Delpiah Wahyuningsih Program Studi Teknik Informatika, Intitut Sains dan Bisnis Atma Luhur

DOI:

https://doi.org/10.32736/sisfokom.v12i3.1808

Keywords:

News label evaluation, machine learning, Naive Bayes, SVM, Random Forest

Abstract

In the current digital era, information availability is abundant, and news serves as a primary source of up-to-date and reliable information for the public. However, with the increasing volume of information, a robust evaluation method is necessary to ensure accurate and dependable news labeling. This research employs a machine learning approach, utilizing three common classification algorithms: Naive Bayes, SVM, and Random Forest, to evaluate news labels based on their titles. The dataset utilized in this study is obtained from Jakarta AI Research and consists of 10,000 samples covering various news topics. Evaluation is conducted using accuracy, precision, recall, and F1-Score metrics to gain a comprehensive understanding of the classification algorithm's performance. The results of this research demonstrate that the SVM algorithm exhibits the best performance, achieving an accuracy rate of 92.92%. Random Forest follows with an accuracy rate of 91.21%, and Naive Bayes with an accuracy rate of 89.61%. These findings provide deep insights into the effectiveness of the machine learning approach in evaluating news labels based on their titles. Furthermore, the study highlights the importance of considering other evaluation metrics such as precision, recall, and F1-Score to obtain a more holistic understanding of the algorithm's performance. Further research is encouraged to involve additional classification algorithms and more diverse and extensive datasets to enhance the comprehension of news label evaluation comprehensively. Such endeavors can significantly contribute to the development of automated systems for classifying news with higher accuracy and reliability in the future

References

D. Rani dan S. D. Setiawati, “Penyajian Jurnalistik Online Infobdg untuk Menjadi Sumber Informasi Kredibel,” J. Jurnalisa, vol. 6, no. 2, pp. 233–247, 2020.

F. S. Nurfikri dan M. S. Mubarok, “Klasifikasi Topik Berita Menggunakan,” vol. 5, no. 1, pp. 1579–1588, 2018.

Briggs, Mark. Journalism next: A practical guide to digital reporting dan publishing. CQ Press, 2013.

H. Junaedi, H. Budianto, I. Maryati, dan Y. Melani, “Data Transformation pada Data Mining,” Pros. Konf. Nas. Inov. dalam Desain dan Teknol., vol. 7, pp. 93–99, 2011.

T. Jamaluddin dan dkk, “Perbdaningan Algoritma Sentencepiece BPE dan Unigram Pada Tokenisasi Artikel Bahasa Indonesia Pendahuluan Studi Terkait,” e-Proceeding Eng., vol. 7, no. 2, pp. 8323–8331, 2020.

M. J. Lavin, Z. Leblanc, dan Q. Dombrowski, “The Programming Historian Analyzing Documents with TF-IDF,” Program. Hist., pp. 1–21, 2020.

D. Wahyuningsih dan E. Patima, “Penerapan Naive Bayes Untuk Penerimaan Beasiswa,” Telematika, vol. 11, no. 1, p. 135, 2018, doi: 10.35671/telematika.v11i1.665.

Y. Zhai, W. Song, X. Liu, L. Liu, dan X. Zhao, “A Chi-square Statistics Based Feature Selection,” 2018 IEEE 9th Int. Conf. Softw. Eng. Serv. Sci., pp. 160–163, 2018.

Schutze, Hinrich, Christopher D. Manning, dan Prabhakar Raghavan. Introduction to information retrieval. Cambridge University Press, 2008.

R. Wati, “Penerapan Algoritma Naive Bayes Dan Particle Swarm Optimization Untuk Klasifikasi Berita Hoax Pada Media Sosial,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 2, pp. 159–164, 2020, doi: 10.33480/jitk.v5i2.1034.

Han, Jiawei, Jian Pei, dan Hanghang Tong. Data mining: concepts and techniques. Morgan kaufmann, 2022.

S. Sudianto, A. D. Sripamuji, I. Ramadhanti, R. R. Amalia, J. Saputra, dan B. Prihatnowo, “Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasisifikasi Topik Berita,” J. Nas. Pendidik. Tek. Inform. JANAPATI, vol. 11, no. 2, pp. 84–91, 2022.

A. Candra, "Jakarta Artificial Intelligence Research is Now Open!" [Online]. Tersedia: https://medium.com/data-folks-indonesia/jakarta-artificial-intelligence-research-is-now-open-f404763867b1. Diakses pada: July 15, 2023.

Downloads

Published

2023-11-07

Issue

Section

Articles