Comparison of Gabor Filter Parameter Characteristics for Dorsal Hand Vein Authentication Using Artificial Neural Networks
DOI:
https://doi.org/10.32736/sisfokom.v12i3.1819Keywords:
Backpropagation Neural Netwotrk, Biometric, Camera NIR LED, Hand Vein, Gabor FilterAbstract
The importance of digital security in today's technological era requires various innovations in creating a reliable security system for humans. Biometrics is an authentication method and the most effective system for performing personal recognition because biometrics have unique characteristics. Dorsal hand vein become biometrics for the individual recognition process in this study using feature extraction of gabor filters and neural network backpropagation to classify recognition into five classes of human individuals, which are expected to be able to provide a higher accuracy value when compared to research on the introduction of dorsal hand vein. This classification process has several stages, namely input image, image pre-processing, segmentation, feature extraction, and image classification. The test results show that the percentage of success based on the five test scenarios has an average value of 75%. In this study, the results of the greatest test accuracy in the fourth scenario were 91%.References
I. Junaedi, “Pengembangan Teknologi Informasi Berbasis Access Id Card,” J. Inf. Syst. Informatics …, vol. 1, no. 1, 2017.
M. Arsal, bheta agus Wardijono, and D. Anggraini, “Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 1, pp. 55–63, 2020, doi: 10.1109/UBMK52708.2021.9559031.
A. Andreansyah, R. F. Gusa, and M. Jumnahdi, “Pengenalan Pola Sidik Jari Menggunakan Multi-Class Support Vector Machine,” J. ELKHA, vol. 11, no. 2, pp. 79–84, 2019.
F. E. Alfian, I. G. P. S. Wijaya, and F. Bimantoro, “Identifikasi Iris Mata Menggunakan Metode Wavelet Daubechies dan K-Nearest Neighbor,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 2, no. 1, pp. 1–10, 2020, doi: 10.29303/jtika.v2i1.76.
R. P. Saidah, Sofia, B. Novria, Aulia, G. Shekinah, and F. Wahid, “Analisis Perbandingan Metode LBP dan CLBP pada Sistem Pengenalan Individu Melalui Iris Mata,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 6, no. 3, pp. 285–290, 2020.
D. S. Wita and D. Y. Liliana, “Klasifikasi Identitas Dengan Citra Telapak Tangan Menggunakan Convolutional Neural Network ( CNN ),” J. Rekayasa Teknol. Inf., vol. 6, no. 1, pp. 1–7, 2022.
C. Susim, Theresia dan Darujati, “Pengolahan Citra Untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV,” J. Syntax Admiration, vol. 2, no. 3, pp. 534–545, 2021.
M. N. Ikhsan and R. Rahmadewi, “Sistem Keamanan Sepeda Motor Dengan Teknologi Biometrik Sidik Jari Menggunakan Sensor Fingerprint,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 7, no. 2, pp. 144–153, 2022.
M. S. Purba, “Perancangan Sistem Identifikasi Biometrik Iris Mata Menggunakan Metode Transformasi Hough,” vol. 7, no. 2, pp. 117–122, 2020.
H. Setiawan, “Telapak Tangan Menggunakan Learning Vector Quantization Palm Vein Image Identification Using Learning,” 2016.
K. Kim, H. W. Jeong, and Y. Lee, “Performance evaluation of dorsal vein network of hand imaging using relative total variation-based regularization for smoothing technique in a miniaturized vein imaging system: A pilot study,” Int. J. Environ. Res. Public Health, vol. 18, no. 4, pp. 1–12, 2021, doi: 10.3390/ijerph18041548.
M. Simanjuntak, K. Abdi Sinuraya, Irhamna, and J. Panjaitan, “Analisis simulasi dan evaluasi teknik pengenalan tanda tangan menggunakak rbf dan knn,” JUTISAL J. Tek. Inform. Univers., vol. 2, no. 1, pp. 54–60, 2022.
M. S. Simanjuntak and J. Panjaitan, “Sistem Information Retrieval Menggunakan K- Nearest Neighbour Dalam Klasifikasi Jurnal Bahasa Inggris,” JUTISAL J. Tek. Inform. Univers., vol. 1, no. 2, pp. 1–8, 2021.
K. M. Alashik and R. Yildirim, “Human Identity Verification from Biometric Dorsal Hand Vein Images Using the DL-GAN Method,” IEEE Access, vol. 9, pp. 74194–74208, 2021, doi: 10.1109/ACCESS.2021.3076756.
S. Bantun, J. Y. Sari, N. Z, M. Mardianto, and A. Achban, “Sistem Absensi Mahasiswa Berbasis Dorsal Hand Vein Menggunakan Local Binary Patterns dan Fuzzy k-NN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 384–396, 2022, doi: 10.35957/jatisi.v9i1.1496.
N. Fajriani, “Pengenalan Pola Garis Telapak Tangan Menggunakan Metode Fuzzy K-Nearest Neighbor,” Edutic - Sci. J. Informatics Educ., vol. 4, no. 1, 2017, doi: 10.21107/edutic.v4i1.3385.
P. Nurtanto Andono, T. Sutojo, and Muljono, Pengolahan Citra Digital, 1st ed. Yogyakarta: Penerbit Andi, 2018.
A. Kadir and A. Susanto, Teori dan Aplikasi Pengolahan Citra, 1st ed. Yogyakarta: Penerbit Andi, 2013.
I. Setiawan, W. Dewanta, H. A. Nugroho, and H. Supriyono, “Pengolah Citra Dengan Metode Thresholding Dengan Matlab R2014A,” J. Media Infotama, vol. 15, no. 2, 2019, doi: 10.37676/jmi.v15i2.868.
A. Susanto, “Penerapan Operasi Morfologi Matematika Citra Digital Untuk Ekstraksi Area Plat Nomor Kendaraan Bermotor,” Pseudocode, vol. 6, no. 1, pp. 49–57, 2019, doi: 10.33369/pseudocode.6.1.49-57.
D. N. Rahmah, H. Tjandrasa, and A. Yuniarti, “Implementasi Segmentasi Pembuluh Darah Retina Pada Citra Morfologi Adaptif,” no. September 2016, pp. 1–6, 2011.
M. A. S. Yudono, R. R. Isnanto, and A. Triwiyatno, “Comparison of Cataract Classification System Based on Retinal Blood Vessels Objects and Retinal Optic Disc Using Backpropagation Neural Network,” Int. J. Innov. Eng. Technol., vol. 18, no. 2, pp. 1–8, 2021, doi: 10.13140/RG.2.2.16638.46408.
admi syarif, A. R. TANJUNG, R. ANDRIAN, and F. R. LUMBANRAJA, “Implementasi Metode Ekstraksi Fitur Gabor Filter dan Probablity Neural Network (PNN) untuk Identifikasi Kain Tapis Lampung,” J. Komputasi, vol. 8, no. 2, 2020, doi: 10.23960/komputasi.v8i2.2641.
T. Wulandari and N. H. Waryanto, “Identifikasi Iris Mata dengan menggunakan Metode Hidden Markov Model dan Tapis Gabor Wavelet,” J. Kaji. dan Terap. Mat., vol. 7, no. 4, pp. 10–11, 2018.
R. N. Hidayat, R. R. Isnanto, and O. D. Nurhayati, “Implementasi Jaringan Syaraf Tiruan Perambatan Balik untuk Memprediksi Harga Logam Mulia Emas Menggunakan Algoritma Lavenberg Marquardt,” J. Teknol. dan Sist. Komput., vol. 1, no. 2, p. 49, 2013, doi: 10.14710/jtsiskom.1.2.2013.49-55.
S. Kusumadewi, Membangung Jaringan Syaraf Tiruan Menggunakan Matlab & Excel link. Yogyakarta: Graha Ilmu, 2004.
G. Ramadhona, B. D. Setiawan, and F. A. Bachtiar, “Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 6048–6057, 2018.
G. Z. Muflih, S. Sunardi, and A. Yudhana, “Jaringan Saraf Tiruan Backpropagation untuk Prediksi Curah Hujan di Wilayah Kabupaten Wonosobo,” MUST J. Math. Educ. Sci. Technol., vol. 4, no. 1, p. 45, 2019, doi: 10.30651/must.v4i1.2670.
R. Riyanda, A. H. H. Pardede, and R. Saragih, “Jaringan Syaraf Tiruan Memprediksi Kebutuhan Obat-Obatan Menggunakan Metode Backpropagation ( Studi Kasus : UPTD Puskesmas Bahorok ),” Semin. Nas. Inform., pp. 47–55, 2021.
M. E. Al Rivan and T. Juangkara, “Identifikasi Potensi Glaukoma dan Diabetes Retinopati Melalui Citra Fundus Menggunakan Jaringan Syaraf Tiruan,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 1, pp. 43–48, 2019, doi: 10.35957/jatisi.v6i1.158.
F. Pontoh, H. V. F. Kainde, and Y. V. Akay, “Teknik pengenalan pembuluh darah punggung tangan berbasis fitur local binary pattern,” J. Widya, vol. 2, no. 2, pp. 198–203, 2021, doi: 10.54593/awl.v2i2.15.
Downloads
Published
Issue
Section
License
The copyright of the article that accepted for publication shall be assigned to Jurnal Sisfokom (Sistem Informasi dan Komputer) and LPPM ISB Atma Luhur as the publisher of the journal. Copyright includes the right to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Sisfokom (Sistem Informasi dan Komputer), LPPM ISB Atma Luhur, and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Sisfokom (Sistem Informasi dan Komputer) are the sole and exclusive responsibility of their respective authors.
Jurnal Sisfokom (Sistem Informasi dan Komputer) has full publishing rights to the published articles. Authors are allowed to distribute articles that have been published by sharing the link or DOI of the article. Authors are allowed to use their articles for legal purposes deemed necessary without the written permission of the journal with the initial publication notification from the Jurnal Sisfokom (Sistem Informasi dan Komputer).
The Copyright Transfer Form can be downloaded [Copyright Transfer Form Jurnal Sisfokom (Sistem Informasi dan Komputer).
This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s). After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted. The copyright form should be signed originally, and send it to the Editorial in the form of scanned document to sisfokom@atmaluhur.ac.id.