Forecasting the Electricity Consumptions of PLN UP3 Cengkareng using Deep Learning
DOI:
https://doi.org/10.32736/sisfokom.v13i1.1849Keywords:
Deep Learning, Electricity Consumption, Long ShortTerm Memory, PLN, PredictionAbstract
The consumption of electrical energy for the community every year has increased including the electricity consumption of PLN UP3 Cengkareng customers. Therefore, PLN UP3 Cengkareng must supply electricity to customers in all categories such as Social Category, Household Category, Business Category, Industry Category and Government Category. With customer needs that continue to increase, it is necessary to forecast future electricity needs, so that PLN UP3 Cengkareng can provide the required electrical power. For this reason, it is necessary to predict the electricity demand. This research was conducted to forecast the electricity demand of UP3 Cengkareng by using the Deep Learning Model Long Short-Term Memory (LSTM). The data set used in this study was taken from the PLN UP3 Cengkareng information system, for 10 years, the period from 2012 to 2021. The data used is divided into 2 categories, namely 70% training data and 30% testing data. The results obtained from this prediction are 96,689, with an average neuron value of 32 and an epoch value of 10.References
Dewi Arfita Yuana. Febrizal Yudhi. 2012. “Prediksi Kebutuhan Energi Listrik Kota Padang Sampai Tahun 2020”
Putra Chandra P.. Tuegeh Maickel St. Mt.. Tumaliang Hans Ir. Mt.. Patras Lily.S. St. Mt. “2014. “Analisa Pertumbuhan Beban Terhadap Ketersediaan Energi Listrik Di Sistem Kelistrikan Sulawesi Selatan”
Husaien Muhammad Saddam. 2016 “Prakiraan Kebutuhan Daya Beban Listrik Jangka Panjang Menggunakan Software Long –Range Energy Alternatives Planing System (LEAP) Digardu Induk Pasuruan”
Syafriwel. 2016 “Analisis Peramalan Kebutuhan Energi Listrik Provinsi Sumatera Utara Menggunakan Metode Peramalan Kuantitatif Sektoral”
Djohar Abdul. Mustarum Musaruddin. 2017 “Analisis Kebutuhan Dan Penyediaan Energi Listrik Di Kabupaten Konawe Kepulauan Tahun 2017-2036 dengan Menggunakan Perangkat Lunak LEAP”
Isnarwaty Devi Putri 2017 “Peramalan Konsumsi Listrik Berdasarkan Pemakaian Kwh Untuk Kategori Industri I-4 Di PT. PLN (Persero) Distribusi Jawa Timur Menggunakan Arima Box-Jenkins”
Rifaldi Ade. Widodo Sri. Nawir Alfian. Anwar Habibie. 2017 “Analisis Supply Energy Listrik Dan Sistem Kontrak Untuk Memenuhi Kebutuhan Listrik Pada Pembangkit Listrik Kabupaten Jeneponto”
Rifais Agus. 2018 “Prediksi Konsumsi Energi Listrik Menggunakan Metode Jaringan Syaraf Tiruan Recurrent Di PLN Apj Salatiga”
Fahmi Mohammad Ali. Furqon Muhammad Tanzil. Sutrisno. 2019 “Sistem Perkiraan Penggunaan Listrik Rumah Tangga Menggunakan Logika Fuzzy (Studi Kasus: PLN Area Pasuruan)”
Suyudi M Abdul Dwiyanto. Djamal Esmeralda C., Maspupa Asri. 2019 “Prediksi Harga Saham Menggunakan Metode Recurrent Neural Network”
Cahyaningsih Afifah. Putra Novantri Prasetya. Pratama Andre Pradika Ekoputro. Ramadhani Rafian. 2020 “Model Prediksi Jumlah Kumulatif Kasus Covid-19 Di Indonesia Menggunakan Metode Neural Network”
I Nyoman Kusuma Wardana , Naser Jawas , I Komang Agus Ady Aryanto, 2020 ”Prediksi Penggunaan Energi Listrik pada Rumah Hunian Menggunakan Long Short-Term Memory”
Rizki Muhammad. Basuki Setio. Azhar Yufis. 2020 “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory Untuk Prediksi Curah Hujan Kota Malang”
Sanjaya David. Budi Setia. 2020 “Prediksi Pencapaian Target Kerja Menggunakan Metode Deep Learning Dan Data Envelopment Analysis”
Tiana Elita Mega. 2020 “Peramalan Konsumsi Listrik Di Daerah Balikpapan Menggunakan Metode Extreme Learning Machine”
Fajri Muhammad. 2021 “Analisis Peramalan Konsumsi Energi Listrik Dengan Metode Extreme Learning Machine Beserta Tingkat Akurasinya Di Kota Pekanbaru”
Fathur Rohman. M. Saleh Al Amin. Emidiana. 2021, ”Penelitian yang berjudul “Prediksi Beban Listrik Dengan Menggunakan Jaringan Syaraf Tiruan Metode Backpropagation”
Hammaines Alifti. Setianingsih Casie. Murti Muhammad Ary. 2021. “Prediksi Penggunaan Energi Listrik Menggunakan Metode Feedforward Neural Network”
Heru Purnomo, Hadi Suyono, Rini Nur Hasanah, 2021 ”Peramalan Beban Jangka Pendek Sistem Kelistrikan Kota Batu Menggunakan Deep Learning Long Short-Term Memory”
Musyafiqafrizal Abdi. Purwanto Riyadi, 2021 “Peramalan Permintaan Pasokan Energi Berdasarkan Intensitas Konsumsi Listrik dan Kapasitas Pembangkit Listrik Terpasang”
Purnomo Heru. Suyono Hadi. Hasanah Rini Nur, 2021 “Peramalan Beban Jangka Pendek Sistem Kelistrikan Kota Batu Menggunakan Deep Learning Long Short-Term Memory”
Rohman Fathur. Al Amin M. Saleh. Emidiana, 2021 “Prediksi Beban Listrik Dengan Menggunakan Jaringan Syaraf Tiruan Metode Backpropagation”
Syafudin Sukri. Nugraha Ranu Agastya. Handayani Kartika. Gata Windu. Linawati Safitri. 2021 “Prediksi Status Pinjaman Bank Dengan Deep Learning Neural Network (DNN)”
Tombeng Marchel Thimoty. Ardian Zalfie, 2021 “Prediksi Penjualan Supermarket Menggunakan Pendekatan Deep Learning”
Nugraha Raditya Hari. Yuwono Eko. Prasetyohadi Latif. Arief B Yanuardhi. Patria Harry, 2022 “Analisis Konsumsi Energi Listrik Pelanggan Dan Biaya Pokok Produksi Penyediaan Energi Listrik Dengan Machine Learning”
Selle Nurfatima. Yudistira Novanto. Dewi Candra. 2022 “Perbandingan Prediksi Penggunaan Listrik Dengan Menggunakan Metode Long Short Term Memory (LSTM) Dan Recurrent Neural Network (RNN)”
Muhammad Abdul Wakhid, Agus Budi Raharjo , Rio Indralaksono dan Diana Purwitasari, 2022 “Peramalan Beban Pada Rencana Operasi Harian Dengan Menggunakan Lstm Studi Kasus : Sub Sistem Sulawesi Selatan”
Buku Statistik Ketenagalistrikan PT PLN Persero Dan Kementerian Energi Dan Sumber Daya Mineral Direktorat Jenderal Ketenagalistrikan
PT.PLN (Persero), Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT. PLN (Persero) Tahun 2021-2030, Indonesia
PT.PLN (Persero), Rencana Penyediaan Tenaga Listrik (RUPTL) PT. PLN (Persero) Tahun 2015-2028, Indonesia
Downloads
Additional Files
Published
Issue
Section
License
The copyright of the article that accepted for publication shall be assigned to Jurnal Sisfokom (Sistem Informasi dan Komputer) and LPPM ISB Atma Luhur as the publisher of the journal. Copyright includes the right to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Sisfokom (Sistem Informasi dan Komputer), LPPM ISB Atma Luhur, and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Sisfokom (Sistem Informasi dan Komputer) are the sole and exclusive responsibility of their respective authors.
Jurnal Sisfokom (Sistem Informasi dan Komputer) has full publishing rights to the published articles. Authors are allowed to distribute articles that have been published by sharing the link or DOI of the article. Authors are allowed to use their articles for legal purposes deemed necessary without the written permission of the journal with the initial publication notification from the Jurnal Sisfokom (Sistem Informasi dan Komputer).
The Copyright Transfer Form can be downloaded [Copyright Transfer Form Jurnal Sisfokom (Sistem Informasi dan Komputer).
This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s). After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted. The copyright form should be signed originally, and send it to the Editorial in the form of scanned document to sisfokom@atmaluhur.ac.id.