Comparison Of K-Means and K-Medoids Algorithm for Clustering Data UMKM in Pagar Alam City
(1) Institut Teknologi Pagar Alam
(2) Institut Teknologi Pagar Alam
(3) Institut Teknologi Pagar Alam
(*) Corresponding Author
Abstract
The aim of this research is clustering MSME data in Pagar Alam City using the K-Means and K-Medoids algorithms. This research is motivated by the lack of further management of MSME data collection, which can hinder the development and improvement of Pagar Alam City MSMEs. Meanwhile, this data is considered necessary for agencies to develop and improve Pagar Alam City MSMEs. Apart from agencies, this data is also useful for sub-districts, sub-districts and RT/RW to find out what interests, talents and potential the community has in what business fields. MSME data is processed using Rapid Miner and Python, the system development method in this research uses the Cross Industry Standard Process for Data Mining (CRISP-DM) method, where the stages include Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The test method uses the Davies-bouldin index, a DBI value that is close to 0 results in good clustering. The results of this research obtained 3 clusters. In 2020 K-Means C0= 1, C1= 3 and C2= 1 sub-district, K-Medoids C0= 1, C1= 1 and C2= 3 sub-district. In 2022 K-Means C0= 1, C1= 3 and C2= 1 sub-district, K-Medoids C0= 1, C1= 3 and C2= 1 sub-districts. The results of the 2020 sub-district DBI clustering calculation are DBI k-means = 0.134 and k-medoids = 0.523. In 2022 DBI k-means = 0.277 and k-medoids = 0.496. So it can be concluded that the K-Means algorithm in the case of grouping MSMEs in Pagar Alam City has better performance, because the DBI value is close to 0. From the results of the grouping it can help provide an overview for related parties in encouraging or providing assistance to sub-districts that are included in the low cluster.
Keywords
Full Text:
PDFReferences
J. Suntoro, Data Mining Algoritma dan Implementasi dengan Pemrograman PHP. PT Elex Media Komputindo, 2019.
A. Fiyan, N. Falahie, T. Susyanto, and R. T. Vulandari, “Implementasi Algoritma Apriori pada Tata Letak Kategori Buku di Perpustakaan,” no. 1, pp. 23–34, 2022.
J. Warmansyah, Pengolahan dan Perancangan CRM dengan Model Prototype dan Simulasi Data Mining. Deepublish (CV BUDI UTAMA), 2022.
A. S. Wibowo and I. D. Mulyastuti, “Penerapan Algoritma K-Means Clustering Pada Jumlah Fasilitas Kesehatan Menurut Pemerintah Provinsi DKI Jakarta,” vol. 23, no. 2, pp. 116–122, 2022.
S. Nurlaela and A. Primajaya, “Algoritma K-Medoids Untuk Clustering Penyakit Maag Di Kabupaten Karawang,” vol. 12, no. 2, pp. 56–62, 2020.
W. Sudrajat, I. Cholid, and J. Petrus, “Penerapan Algoritma K-Means Clustering untuk Pengelompokan UMKM Menggunakan Rapidminer,” pp. 27–36, 2022.
R. Wahyusari and S. Wardani, “Perbandingan Algoritma K-Means dan Algoritma K- Medoid Untuk Pengelompokan UMKM di Kebumen Comparison of the K-Means Algorithm and the K-Medoid Algorithm for,” pp. 74–79, 2023.
E. Tasia and M. Afdal, “Comparison Of K-Means And K-Medoid Algorithms For Clustering Of Flood-Prone Areas In Rokan Hilir District Perbandingan Algoritma K-Means Dan K-Medoids Untuk Clustering Daerah Rawan Banjir Di Kabupaten Rokan Hilir,” vol. 3, no. 1, pp. 65–73, 2023.
I. Suryati, “Pengaruh Ukuran Usaha Dan Sumber Modal Terhadap Penerapan Standar Akuntansi Pada Usaha Mikro Kecil Dan Menengah Bidang Jasa Atau Pelayanan Laundry Di Kecamatan Makasar Tahun 2019,” vol. 1, no. 1, pp. 18–30, 2021.
N. Manullang, R. W. Sembiring, I. Gunawan, I. Parlina, T. Informatika, and T. Informatika, “Implementasi Teknik Data Mining untuk Prediksi Peminatan Jurusan Siswa Menggunakan Algoritma C4.5,” vol. 2, no. 2, pp. 1–5, 2021.
I. G. S. Elrohi, Marlina, and Renny, “Implementasi Cloud Computing dengan Google Colaboratory Pada Aplikasi Pengolah Data Zoom Participants,” vol. 6, no. 1, pp. 24–30, 2022.
I. W. Septiani, A. C. Fauzan, and M. M. Huda, “Implementasi Algoritma K-Medoids Dengan Evaluasi Davies-Bouldin- Index Untuk Klasterisasi Harapan Hidup Pasca Operasi Pada Pasien Penderita Kanker Paru-Paru,” vol. 3, pp. 556–566, 2022, doi: 10.30865/json.v3i4.4055.
M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” vol. 5, no. 2, 2021.
DOI: https://doi.org/10.32736/sisfokom.v13i2.2090
Refbacks
- There are currently no refbacks.