Comparative Analysis of SVM and NB Algorithms in Evaluating Public Sentiment on Supreme Court Rulings

Putri Dwi Rahayu Maulidiana(1), Anik Vega Vitianingsih(2*), Slamet Kacung(3), Anastasia Lidya Maukar(4), David Hermansyah(5)

(1) Informatics Department, Universitas Dr. Soetomo, Surabaya
(2) Informatics Department, Universitas Dr. Soetomo, Surabaya
(3) Informatics Department, Universitas Dr. Soetomo, Surabaya
(4) Industrial Engineering Department, President University, Bekasi
(5) Informatics Department, Universitas Dr. Soetomo, Surabaya
(*) Corresponding Author

Abstract


The legal events that happened to Ferdy Sambo and the Supreme Court’s decision in the cassation triggered emotional reactions and various opinions among the public, especially on social media sites such as Xapps. Some comments reflect people’s concerns about fairness in the legal system. They doubted the integrity of legal institutions or believed that decisions were unfair or in line with vested interests. This research aims to analyze public perceptions of Supreme Court decisions. The research process includes data collection, preprocessing, labeling, weighting, classification using Support Vector Machine and Naïve Bayes, and performance evaluation using a confusion matrix. A dataset of 624 was taken from X apps using the Twitter scraping technique. The lexicon method is used for data labeling, dividing the data into positive, negative, and neutral classes. The analysis results show 46 tweets categorized as positive sentiment, 133 tweets categorized as negative sentiment, and 422 tweets categorized as neutral sentiment. Based on testing with a data ratio of 80:20, both SVM and NB methods show good performance. The SVM criteria showed an accuracy of 0.84, precision of 0.61, recall of 0.78, and f1-score of 0.66, while the NB criteria showed an accuracy of 0.73, precision of 0.37, recall of 0.57, and f1-score of 0.35.


Keywords


Sentiment Analysis; Naïve Bayes; SVM; Ferdy Sambo; Xapps

Full Text:

PDF

References


D. I. Prof. Dr. Sulistiyono S, Sistem Peradilan Di Indonesia Dalam Teori Dan Praktik. Tapos - Cimanggis, Depok: PRENADAMEDIA GROUP, 2018.

K. M. A. R. Indonesia, “Direktori Putusan Mahkamah Agung Republik Indonesia,” Publikasi Dokumen Elektronik Putusan seluruh Pengadilan di Indonesia. .

and A. F. O. P. D. Darwis, E. S. Pratiwi, “Data Twitterkomisi Pemberantasan Korupsi Republik Indonesia,” J. Ilm. Edutic, vol. 7, no, 2020.

Lisa R, “Digital Repository Universitas Jember Digital Repository Universitas Jember,” Anal. Sentimen Opini Masy. Terhadap Institusi Polri Pada Media Sos. Twitter Menggunakan Metod. Support Vector Mach. dan Naïve Bayes, vol. 3, no. 3, pp. 69–70, 2022.

R. N. Fahmi, N. Nursyifa, and A. Primajaya, “Analisis Sentimen Pengguna Twitter Terhadap Kasus Penembakan Laskar Fpi Oleh Polri Dengan Metode Naive Bayes Classifier,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 61–66, 2021.

S. Nurhaliza, D. Febriawan, and F. N. Hasan, “Sentiment Analysis of Society Towards the Child-free Phenomenon ( Life Without Children ) on Twitter Using Naïve Bayes Algorithm,” vol. 13, pp. 40–48, 2024.

K. Hasanah, “Comparison of Sentiment Analysis Model for Shopee Comments on Google Play Store,” vol. 13, pp. 21–30, 2024.

E. R. Kaburuan and N. R. Setiawan, “Sentimen Analisis Review Aplikasi Digital Korlantas Pada Google Play Store Menggunakan Metode SVM,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 1, pp. 105–116, 2023.

H. R. Nugraha F, Haranii N, Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Bandung: Kreatif Industri Nusantara, 2020.

D. Asri Y, Kuswardanu D, “MACHINE LEARNING & DEEP LEARNING: Analisis Sentimen Menggunakan Ulasan Pengguna Aplikasi.” Uwais Inspirasi Indonesia, Ponorogo, 2019.

“MA Anulir Vonis Mati Ferdy Sambo, Jadi Penjara Seumur Hidup!,” detikcom, 2023. .

“MA kabulkan kasasi Ferdy Sambo jadi divonis seumur hidup,” kumparan, 2023. .

I. S. Swastika R, Mukodimah S, Susanto F, Muhamad M, IMPLEMENTASI DATA MINING (Clastering, Association, Prediction, Estimation, Classification). Indramayu: Penerbit Adab, 2023.

P. D. Oleh Fitri Marisa, S.Kom., M.Pd. , Anastasia Lidya Maukar, S.T., M.Sc., M.M.T. , Dr. Tubagus Mohammad Akhriza, S.Si., M.M.S.I., Data Mining Konsep Dan Penerapannya. Yogyakarta: Deepublish, 2021.

J. Hirschberg and C. D. Manning, “Advances in natural language processing,” Science (80-. )., vol. 349, no. 6245, pp. 261–266, 2015.

S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining, vol. 72. 2015.

D. Solimun, Fernandes A, Metodologi Penelitian. Tim UB Press, 2023.

M. S, FAST TEXT DAN WORD2VEC PADA QUERY KESAMAAN SEMANTIK SISTEM TEMU KEMBALI INFORMASI. Sleman: Deepublish, 2022.

S. T. H. Faisal R, Kartini D , Arrahimi R A, Belajar Data Science: Text Mining Untuk Pemula I. Kalimantan Selatan: Scripta Cendekia, 2022.

Yahya, DATA MINING. Bojong genteng, Sukabumi: Tim CV Jejak, 2022.

D. Permana A, Wahyuddin S, MACHINE LEARNING. PT Global Eksekutif Teknologi, 2023.

D. Junaidi S, Beno I, MACHINE LEARNING. Jambi: PT. Sonpedia Publishing Indonesia, 2024.

D. Mustika, Ardilla Y, DATA MINING DAN APLIKASINYA. Bandung: Widina Bhakti Persada Bandung (Grup CV. Widina Media Utama), 2021.




DOI: https://doi.org/10.32736/sisfokom.v13i2.2116

Refbacks

  • There are currently no refbacks.



Indexed By:

 



Creative Commons License
Jurnal Sisfokom (Sistem Informasi dan Komputer) has ISSN 2301-7988 and e-ISSN 2581-0588 which is published by Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) ISB Atma Luhur under a Creative Commons Attribution-ShareAlike 4.0 International License.
Web Analytics Made Easy - StatCounter