Water Level Classification for Detect Flood Disaster Status Using KNN and SVM

Authors

  • Jiwa Akbar Department of Electrical Engineering, Faculty of Computer Engineering and Design, Nusa Putra University
  • Muchtar Ali Setyo Yudono Department of Electrical Engineering, Faculty of Computer Engineering and Design, Nusa Putra University

DOI:

https://doi.org/10.32736/sisfokom.v13i3.2166

Keywords:

Flood, K-Nearest Neighbors, Support Vector Machine, Ciliwung River, Water Surface Elevation

Abstract

Flooding occurs when the water's surface elevation exceeds the average level, overflowing river water and creating inundation in low-lying areas. Early warning for potential floods significantly reduces losses, such as human casualties and property damage. In this context, the flood disaster classification system uses water surface elevation data from the Water Resources Agency to predict the likelihood of floods using the K-Nearest Neighbors (KNN) Algorithm. This research aims to classify flood status based on water surface elevation using the K-Nearest Neighbors and Support Vector Machine(SVM) methods in the Ciliwung River. The study results indicate that the SVM algorithm outperforms the KNN algorithm. The SVM algorithm used parameter C ranging from 1 to 10 in the scenarios, and the RBF kernel achieved 100% accuracy. On the other hand, the KNN algorithm achieved 100% accuracy only for K values of 1, 2, 3, 4, and 5 in scenarios where K ranged from 1 to 10.

References

A. Rosyida, R. Nurmasari, and Suprapto, “Analisis Perbandingan Dampak Kejadian Bencana Hidrometeorologi dan Geologi di Indonesia dilihat dari Jumlah Korban dan Kerusakan (Studi: Data Kejadian Bencana Indonesia 2018),” J. Dialog Penanggulangan Bencana, vol. 10, no. 1, pp. 12–21, 2019, [Online]. Available: https://perpustakaan.bnpb.go.id/jurnal/index.php/JDPB/article/download/127/97/204

R. Karno and J. Mubarrak, “Analisis spasial (ekologi) pemanfaatan daerah aliran sungai (das) di sungai batang lubuh kecamatan rambah kabupaten rokan hulu,” J. Ilm. Edu Res., vol. 7, no. 1, pp. 1–4, 2018.

R. Al Fauzi, “Analisis Tingkat Kerawanan Banjir Kota Bogor Menggunakan Metode Overlay dan Scoring Berbasis Sistem Informasi Geografis,” Geomedia Maj. Ilm. dan Inf. Kegeografian, vol. 20, no. 2, pp. 96–107, 2022, doi: https://doi.org/10.21831/gm.v20i2.48017.

Q. S. Slat, “Analisis Debit Banjir dan Tinggi Muka Air Sungai Pinateduan di Desa Tatelu Kabupaten Minahasa Utara,” J. Sipil Statik, vol. 8, no. 3, pp. 403–408, 2020.

Anggraini; Asfilia Nova, “Prediksi Status Banjir Sungai Ciliwung Untuk Deteksi Dini Bencana Banjir Menggunakan Artificial Neural Network Backpropagation.,” Universitas Islam Negeri Maulana Malik Ibrahim, 2022.

I. K. A. Sari and D. Sebayang, “Analisis Banjir Dan Tinggi Muka Air Pada Ruas Sungai Ciliwung,” Forum Mek., vol. 7, 2018, [Online]. Available: https://doi.org/10.33322/forummekanika.v7i1.85

D. Hartanti and A. Ichsan, “Komparasi Algoritma Machine Learning dalam Identifikasi Kualitas Air,” vol. 9, no. 1, pp. 1–6, 2023.

I. M. Faiza, G. Gunawan, and W. Andriani, “Tinjauan Pustaka Sistematis: Penerapan Metode Machine Learning untuk Deteksi Bencana Banjir,” J. Minfo Polgan, vol. 11, no. 2, pp. 59–63, 2022, doi: 10.33395/jmp.v11i2.11657.

C. Algoritma and N. Bayes, “Perbandingan Metode Data Mining untuk Prediksi Curah Hujan dengan,” Penelit. dan Pengabdi. Masy., vol. 6, pp. 187–197, 2022, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas Prosiding

A. Naïve, “Comparison of Data Mining Methods for Predition of Floods with Naïve Bayes and KNN Algorithm Perbandingan Metode Data Mining untuk Prediksi Banjir Dengan,” pp. 40–48, 2022.

A. A. Nurkhaliza and A. W. Wijayanto, “Perbandingan Algoritma Klasifikasi Support Vector Machine dan Random Forest pada Prediksi Status Indeks Mitigasi dan Kesiapsiagaan Bencana (IMKB) Satuan Kerja BPS di Indonesia Tahun 2020,” Maret, vol. 7, no. 1, pp. 54–59, 2022, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika54

F. Yustiasari Liriwati, “Transformasi Kurikulum; Kecerdasan Buatan untuk Membangun Pendidikan yang Relevan di Masa Depan,” J. IHSAN J. Pendidik. Islam, vol. 1, no. 2, pp. 62–71, 2023, doi: 10.61104/ihsan.v1i2.61.

I. Darmayanti, P. Subarkah, L. R. Anunggilarso, and J. Suhaman, “Prediksi Potensi Siswa Putus Sekolah Akibat Pandemi Covid-19 Menggunakan Algoritme K-Nearest Neighbor,” JST (Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 230–238, 2021, doi: 10.23887/jstundiksha.v10i2.39151.

V. Rani, S. T. Nabi, M. Kumar, A. Mittal, and K. Kumar, “Self-supervised Learning: A Succinct Review,” Arch. Comput. Methods Eng., vol. 30, no. 4, pp. 2761–2775, 2023, doi: 10.1007/s11831-023-09884-2.

S. Tibaldi, G. Magnifico, D. Vodola, and E. Ercolessi, “Unsupervised and supervised learning of interacting topological phases from single-particle correlation functions,” SciPost Phys., vol. 14, no. 1, pp. 1–18, 2023, doi: 10.21468/SciPostPhys.14.1.005.

P. Putra, A. M. H. Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” J. Tek. Inform. Kaputama, vol. 6, no. 1, pp. 297–305, 2022.

N. S. H. Pratama, D. T. Afandi, M. Mulyawan, I. Iin, and N. D. Nuris, “Menurunkan Presentase Kredit Macet Nasabah Dengan Menggunakan Algoritma K-Nearest Neighbor,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 5, no. 2, p. 131, 2021, doi: 10.51211/isbi.v5i2.1537.

A. K. Clustering, “Perbandingan Akurasi Euclidean Distance , Minkowski Distance , dan Manhattan Distance pada Algoritma K- Means Clustering berbasis Chi-Square,” no. July, 2019, doi: 10.30591/jpit.v4i1.1253.

K. Kunci, “p-ISSN: 2774-6291 e-ISSN: 2774-6534 Available online at http://cerdika.publikasiindonesia.id/index.php/cerdika/index,” vol. 3, no. September, pp. 828–839, 2023.

Sholeh, D. Andayati, and Y. Rachmawati, “Data Mining Model Klasifikasi Menggunakan K-Nearest Neighbor With Normalization For Diabetes Prediction,” TeIka, vol. 12, no. 1, pp. 77–87, 2022.

Downloads

Published

2024-11-13

Issue

Section

Articles