Water Level Classification for Detect Flood Disaster Status Using KNN and SVM
DOI:
https://doi.org/10.32736/sisfokom.v13i3.2166Keywords:
Flood, K-Nearest Neighbors, Support Vector Machine, Ciliwung River, Water Surface ElevationAbstract
Flooding occurs when the water's surface elevation exceeds the average level, overflowing river water and creating inundation in low-lying areas. Early warning for potential floods significantly reduces losses, such as human casualties and property damage. In this context, the flood disaster classification system uses water surface elevation data from the Water Resources Agency to predict the likelihood of floods using the K-Nearest Neighbors (KNN) Algorithm. This research aims to classify flood status based on water surface elevation using the K-Nearest Neighbors and Support Vector Machine(SVM) methods in the Ciliwung River. The study results indicate that the SVM algorithm outperforms the KNN algorithm. The SVM algorithm used parameter C ranging from 1 to 10 in the scenarios, and the RBF kernel achieved 100% accuracy. On the other hand, the KNN algorithm achieved 100% accuracy only for K values of 1, 2, 3, 4, and 5 in scenarios where K ranged from 1 to 10.References
A. Rosyida, R. Nurmasari, and Suprapto, “Analisis Perbandingan Dampak Kejadian Bencana Hidrometeorologi dan Geologi di Indonesia dilihat dari Jumlah Korban dan Kerusakan (Studi: Data Kejadian Bencana Indonesia 2018),” J. Dialog Penanggulangan Bencana, vol. 10, no. 1, pp. 12–21, 2019, [Online]. Available: https://perpustakaan.bnpb.go.id/jurnal/index.php/JDPB/article/download/127/97/204
R. Karno and J. Mubarrak, “Analisis spasial (ekologi) pemanfaatan daerah aliran sungai (das) di sungai batang lubuh kecamatan rambah kabupaten rokan hulu,” J. Ilm. Edu Res., vol. 7, no. 1, pp. 1–4, 2018.
R. Al Fauzi, “Analisis Tingkat Kerawanan Banjir Kota Bogor Menggunakan Metode Overlay dan Scoring Berbasis Sistem Informasi Geografis,” Geomedia Maj. Ilm. dan Inf. Kegeografian, vol. 20, no. 2, pp. 96–107, 2022, doi: https://doi.org/10.21831/gm.v20i2.48017.
Q. S. Slat, “Analisis Debit Banjir dan Tinggi Muka Air Sungai Pinateduan di Desa Tatelu Kabupaten Minahasa Utara,” J. Sipil Statik, vol. 8, no. 3, pp. 403–408, 2020.
Anggraini; Asfilia Nova, “Prediksi Status Banjir Sungai Ciliwung Untuk Deteksi Dini Bencana Banjir Menggunakan Artificial Neural Network Backpropagation.,” Universitas Islam Negeri Maulana Malik Ibrahim, 2022.
I. K. A. Sari and D. Sebayang, “Analisis Banjir Dan Tinggi Muka Air Pada Ruas Sungai Ciliwung,” Forum Mek., vol. 7, 2018, [Online]. Available: https://doi.org/10.33322/forummekanika.v7i1.85
D. Hartanti and A. Ichsan, “Komparasi Algoritma Machine Learning dalam Identifikasi Kualitas Air,” vol. 9, no. 1, pp. 1–6, 2023.
I. M. Faiza, G. Gunawan, and W. Andriani, “Tinjauan Pustaka Sistematis: Penerapan Metode Machine Learning untuk Deteksi Bencana Banjir,” J. Minfo Polgan, vol. 11, no. 2, pp. 59–63, 2022, doi: 10.33395/jmp.v11i2.11657.
C. Algoritma and N. Bayes, “Perbandingan Metode Data Mining untuk Prediksi Curah Hujan dengan,” Penelit. dan Pengabdi. Masy., vol. 6, pp. 187–197, 2022, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas Prosiding
A. Naïve, “Comparison of Data Mining Methods for Predition of Floods with Naïve Bayes and KNN Algorithm Perbandingan Metode Data Mining untuk Prediksi Banjir Dengan,” pp. 40–48, 2022.
A. A. Nurkhaliza and A. W. Wijayanto, “Perbandingan Algoritma Klasifikasi Support Vector Machine dan Random Forest pada Prediksi Status Indeks Mitigasi dan Kesiapsiagaan Bencana (IMKB) Satuan Kerja BPS di Indonesia Tahun 2020,” Maret, vol. 7, no. 1, pp. 54–59, 2022, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika54
F. Yustiasari Liriwati, “Transformasi Kurikulum; Kecerdasan Buatan untuk Membangun Pendidikan yang Relevan di Masa Depan,” J. IHSAN J. Pendidik. Islam, vol. 1, no. 2, pp. 62–71, 2023, doi: 10.61104/ihsan.v1i2.61.
I. Darmayanti, P. Subarkah, L. R. Anunggilarso, and J. Suhaman, “Prediksi Potensi Siswa Putus Sekolah Akibat Pandemi Covid-19 Menggunakan Algoritme K-Nearest Neighbor,” JST (Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 230–238, 2021, doi: 10.23887/jstundiksha.v10i2.39151.
V. Rani, S. T. Nabi, M. Kumar, A. Mittal, and K. Kumar, “Self-supervised Learning: A Succinct Review,” Arch. Comput. Methods Eng., vol. 30, no. 4, pp. 2761–2775, 2023, doi: 10.1007/s11831-023-09884-2.
S. Tibaldi, G. Magnifico, D. Vodola, and E. Ercolessi, “Unsupervised and supervised learning of interacting topological phases from single-particle correlation functions,” SciPost Phys., vol. 14, no. 1, pp. 1–18, 2023, doi: 10.21468/SciPostPhys.14.1.005.
P. Putra, A. M. H. Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” J. Tek. Inform. Kaputama, vol. 6, no. 1, pp. 297–305, 2022.
N. S. H. Pratama, D. T. Afandi, M. Mulyawan, I. Iin, and N. D. Nuris, “Menurunkan Presentase Kredit Macet Nasabah Dengan Menggunakan Algoritma K-Nearest Neighbor,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 5, no. 2, p. 131, 2021, doi: 10.51211/isbi.v5i2.1537.
A. K. Clustering, “Perbandingan Akurasi Euclidean Distance , Minkowski Distance , dan Manhattan Distance pada Algoritma K- Means Clustering berbasis Chi-Square,” no. July, 2019, doi: 10.30591/jpit.v4i1.1253.
K. Kunci, “p-ISSN: 2774-6291 e-ISSN: 2774-6534 Available online at http://cerdika.publikasiindonesia.id/index.php/cerdika/index,” vol. 3, no. September, pp. 828–839, 2023.
Sholeh, D. Andayati, and Y. Rachmawati, “Data Mining Model Klasifikasi Menggunakan K-Nearest Neighbor With Normalization For Diabetes Prediction,” TeIka, vol. 12, no. 1, pp. 77–87, 2022.
Downloads
Additional Files
Published
Issue
Section
License
The copyright of the article that accepted for publication shall be assigned to Jurnal Sisfokom (Sistem Informasi dan Komputer) and LPPM ISB Atma Luhur as the publisher of the journal. Copyright includes the right to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Sisfokom (Sistem Informasi dan Komputer), LPPM ISB Atma Luhur, and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Sisfokom (Sistem Informasi dan Komputer) are the sole and exclusive responsibility of their respective authors.
Jurnal Sisfokom (Sistem Informasi dan Komputer) has full publishing rights to the published articles. Authors are allowed to distribute articles that have been published by sharing the link or DOI of the article. Authors are allowed to use their articles for legal purposes deemed necessary without the written permission of the journal with the initial publication notification from the Jurnal Sisfokom (Sistem Informasi dan Komputer).
The Copyright Transfer Form can be downloaded [Copyright Transfer Form Jurnal Sisfokom (Sistem Informasi dan Komputer).
This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s). After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted. The copyright form should be signed originally, and send it to the Editorial in the form of scanned document to sisfokom@atmaluhur.ac.id.