ISO Technology Analysis with Extended TAM : A Case Study in PT Ebako Nusantara

Authors

  • Nindhia Hutagaol Department of Informatic Engineering, Universitas Asa Indonesia
  • Faizal Asrul Pasaribu Department of Information System, Universitas Asa Indonesia
  • Jumadi Simangunsong Department of Informatic Engineering, Universitas Asa Indonesia

DOI:

https://doi.org/10.32736/sisfokom.v14i1.2231

Keywords:

Machine learning, Employee Attrition, Employee Retention, Highest Accuracy, Employee Performance

Abstract

Implementing information systems in manufacturing aims to improve operational efficiency and service quality. This study evaluates the acceptance of Internal Service Order (ISO) applications with the Extended Technology Acceptance Model (ETAM), that adds variables such as information quality, system quality and user habits. PLS-SEM analysis of 31 respondents found that user habits significantly influenced perceived ease of use (77.8%), which in turn influenced perceived usefulness (86.4%) and user attitude (62%). However, information quality did not significantly influence user habits, suggesting a need to improve information detail. These findings will help develop a TAM model for Indonesian furniture companies. The study recommends the improvement of information accuracy, the development of real-time notification features, and user training to increase adoption and operational efficiency This study provides guidance for organizations to optimize the application of technology in manufacturing operations.

References

T. H. L. Tulus, A. Id Hadiana, and I. Santikarama, “Sistem Prediksi Awal Terhadap Atrisi Karyawan Menggunakan Algoritma C4.5,” Informatics Digit. Expert, vol. 4, no. 1, pp. 18–24, 2022, doi: 10.36423/index.v4i1.882.

P. K. Jain, M. Jain, and R. Pamula, “Explaining and predicting employees’ attrition: a machine learning approach,” SN Appl. Sci., vol. 2, no. 4, pp. 1–11, 2020, doi: 10.1007/s42452-020-2519-4.

N. Mansor, N. S. Sani, and M. Aliff, “Machine Learning for Predicting Employee Attrition,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 11, pp. 435–445, 2021, doi: 10.14569/IJACSA.2021.0121149.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.

D. Afreyna Fauziah, A. Maududie, and I. Nuritha, “Klasifikasi Berita Politik Menggunakan Algoritma K-nearst Neighbor (Classification of Political News Content using K-Nearest Neighbor),” Berk. Sainstek, vol. 6, pp. 106–114, 2018, [Online]. Available: https://jurnal.unej.ac.id/index.php/BST/article/view/9256

V. A. Putri, K. Carissa, A. Sotyawardani, and R. A. Rafael, “Peran Artificial Intelligence dalam Proses Pembelajaran Mahasiswa di Universitas Negeri Surabaya,” Pros. Semin. Nas., pp. 615–630, 2023.

A. Muliawan, A. Rizal, and S. Hadiyoso, “Heart Disease Prediction Based on Physiological Parameters Using Ensemble Classifier and Parameter Optimization,” J. Appl. Eng. Technol. Sci., vol. 5, no. 1, pp. 258–267, 2023, doi: 10.37385/jaets.v5i1.2169.

A. Raza, K. Munir, M. Almutairi, F. Younas, M. Muhammad, and S. Fareed, “Predicting Employee Attrition Using Machine Learning Approaches,” Appl. Sci., 2022.

İ. ERSÖZ KAYA and O. KORKMAZ, “Machine Learning Approach for Predicting Employee Attrition and Factors Leading to Attrition,” Çukurova Üniversitesi Mühendislik Fakültesi Derg., vol. 36, no. 4, pp. 913–928, 2021, doi: 10.21605/cukurovaumfd.1040487.

F. Ozdemir, M. Coskun, C. Gezer, and V. Cagri Gungor, “Assessing Employee Attrition Using Classifications Algorithms,” ACM Int. Conf. Proceeding Ser., pp. 118–122, 2020, doi: 10.1145/3404663.3404681.

J. Hu, R. Zhang, H. Zhu, and L. He, “A Novel Classification Method Based on Particle Swarm Optimization,” Proc. 2022 5th Int. Conf. Artif. Intell. Pattern Recognit., 2022, doi: https://doi.org/10.1145/3573942.3573983.

M. P. Behera, A. Sarangi, D. Mishra, and S. K. Sarangi, “A Hybrid Machine Learning algorithm for Heart and Liver Disease Prediction Using Modified Particle Swarm Optimization with Support Vector Machine,” Procedia Comput. Sci., vol. 218, no. 2022, pp. 818–827, 2022, doi: 10.1016/j.procs.2023.01.062.

T. Cuong-Le, T. Nghia-Nguyen, S. Khatir, P. Trong-Nguyen, S. Mirjalili, and K. D. Nguyen, “An efficient approach for damage identification based on improved machine learning using PSO-SVM,” Eng. Comput., vol. 38, pp. 3069–3084, 2022, [Online]. Available: https://link.springer.com/article/10.1007/s00366-021-01299-6

S. Bumbungan, Kusrini, and Kusnawi, “Penerapan Particle Swarm Optimization (PSO) dalam Pemilihan Parameter Secara Otomatis pada Support Vector Machine (SVM) untuk Prediksi Kelulusan Mahasiswa Politeknik Amamapare Timika,” J. Tek. AMATA, vol. 4, no. 1, pp. 81–93, 2022, doi: 10.55334/jtam.v4i1.77.

I. Syarif, E. Zaluska, A. Prugel-Bennett, and G. Wills, “Application of bagging, boosting and stacking to intrusion detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7376 LNAI, pp. 593–602, 2012, doi: 10.1007/978-3-642-31537-4_46.

P. Dhakal, S. Khanal, and R. Bista, “Prediction of Anemia using Machine Learning Algorithms,” Int. J. Comput. Sci. Inf. Technol., vol. 15, no. 1, pp. 15–30, 2023, doi: 10.5121/ijcsit.2023.15102.

N. H. A. Malek, W. F. W. Yaacob, Y. B. Wah, S. A. Md Nasir, N. Shaadan, and S. W. Indratno, “Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data,” Indones. J. Electr. Eng. Comput. Sci., vol. 29, no. 1, pp. 598–608, 2023, doi: 10.11591/ijeecs.v29.i1.pp598-608.

H. ŞEVGİN, “A comparative study of ensemble methods in the field of education: Bagging and Boosting algorithms,” Int. J. Assess. Tools Educ., vol. 10, no. 3, pp. 544–562, 2023, doi: 10.21449/ijate.1167705.

M. S. Alshiddy and B. N. Aljaber, “Employee Attrition Prediction using Nested Ensemble Learning Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 7, pp. 932–938, 2023, doi: 10.14569/IJACSA.2023.01407101.

A. Data, E. Eda, S. Peraih, and M. Olimpiade, “Exploratory Data Analysis ( EDA ): A Study of Olympic Medallist,” vol. 11, no. September, pp. 578–587, 2022.

Downloads

Published

2025-01-31

Issue

Section

Articles