Analysis to Predict the Number of New Students At UNU Pasuruan using Arima Method

Authors

  • Fachri Ayudi Fitrony Faculty of Computer Science University of Amikom, Yogyakarta, Indonesia
  • Laksmita Dewi Supraba Faculty of Computer Science University of Amikom, Yogyakarta, Indonesia
  • Tessa Rantung Faculty of Computer Science University of Amikom, Yogyakarta, Indonesia
  • I Made Artha Agastya Faculty of Computer Science, University of Amikom, Yogyakarta, Indonesia
  • Kusrini Kusrini Faculty of Computer Science, University of Amikom, Yogyakarta, Indonesia

DOI:

https://doi.org/10.32736/sisfokom.v14i1.2251

Abstract

New student admission is an important aspect in higher education management, including Nahdlatul Ulama University (UNU) Pasuruan. Relevant prediction of total new students is needed to support resource planning such as teaching staff, facilities, and budget. This study aims to evaluate the historical pattern of new student admissions at UNU Pasuruan and predict the number of new students in the coming years using the ARIMA (Auto Regressive Integrated Moving Average) method. The data used is historical data on new student admissions in the last five years, which is analyzed to identify trends, seasonality, and fluctuation patterns. The analysis is performed using statistical software such as Python to improve the accuracy and efficiency of the process. This study approach includes several main steps, namely collecting historical data on the number of new students, testing stationarity using the Augmented Dickey-Fuller (ADF) test, identifying model parameters through ACF and PACF graphs, and estimating ARIMA model parameters. The resulting model is evaluated using prediction error metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The study findings describe that the ARIMA model (6,0,1) produces an RMSE value of 21.88 and a MAPE of 0.2%. In addition to having the smallest error score, the ARIMA model (6,0,1) also has the smallest AIC score of the various models that can be used for predictions, which is 447.44 and the largest log likelihood value, which is -214.72. The largest prediction of the number of new students is in July, which is 92.72 and the smallest in February, which is 24.43. This prediction is expected to help university management in optimizing resource planning, increasing management efficiency, and anticipating fluctuations in the number of new students in the future. This study offers new findings in the form of the use of predictive models based on historical data to support strategic decision- making, such as resource allocation and promotion planning. With these results, universities can anticipate changes in the number of enrollments more effectively, which were previously only done based on subjective estimates. The model built can also be applied to similar datasets in the future with appropriate parameter adjustments.

References

M. Bennie, W. Malcolm, S. McTaggart, and T. Mueller, “Improving prescribing through big data approaches—Ten years of the Scottish Prescribing Information System,” Br. J. Clin. Pharmacol., vol. 86, no. 2, pp. 250–257, 2020, doi: 10.1111/bcp.14184.

C. G. Toxværd, K. S. Benthien, A. H. Andreasen, A. Nielsen, M. Osler, and N. B. Johansen, “Chronic Diseases in High-Cost Users of Hospital, Primary Care, and Prescription Medication in the Capital Region of Denmark,” J. Gen. Intern. Med., vol. 34, no. 11, pp. 2421–2426, 2019, doi: 10.1007/s11606-019-05315-w.

K. Ayu and W. Yulianingsih, “Simposium Hukum Indonesia,” Simp. Huk. Indones., vol. 1, no. 1, pp. 574–586, 2019.

W. L. Prabowo, “Teori Tentang Pengetahuan Peresepan Obat,” J. Med. hutama, vol. 02, no. 04, pp. 402–406, 2021.

K. Ulum, I. L. Hilmi, and S. Salman, “Review Artikel : Implementasi dan Evaluasi Peresepan Elektronik Dalam Upaya Menurunkan Kesalahan Pengobatan,” J. Pharm. Sci., vol. 6, no. 1, pp. 192–198, 2023, doi: 10.36490/journal-jps.com.v6i1.19.

F. Indrasari, R. Wulandari, and D. N. Anjayanti, “Peran Resep Elektronik dalam Meningkatkan Medication Safety pada Proses Peresepan di RSI Sultan Agung Semarang,” J. Farm. Dan Ilmu Kefarmasian Indones., vol. 7, no. 1SI, p. 1, 2021, doi: 10.20473/jfiki.v7i1si2020.1-6.

R. D. Garcia, G. S. Ramachandran, R. Jurdak, and J. Ueyama, “A Blockchain-based Data Governance Framework with Privacy Protection and Provenance for e-Prescription,” 2021.

J. R. Paragas, A. M. Sison, and R. P. Medina, “An Improved Hill Cipher Algorithm using CBC and Hexadecimal S-Box,” 2019 IEEE Eurasia Conf. IOT, Commun. Eng. ECICE 2019, no. October, pp. 77–81, 2019, doi: 10.1109/ECICE47484.2019.8942717.

E. Pawan and P. Hasan, “Optimization of Hill Cipher Method for Encryption and Decryption of Prescription Drugs at Puskesmas Twano Jayapura City,” Int. J. Comput. Inf. Syst., vol. 2, no. 4, pp. 149–154, 2021, doi: 10.29040/ijcis.v2i4.48.

A. Eko and S. Informatika, “Keamanan Pesan Teks Dengan Metode Enkripsi Dan Dekripsi Menggunakan Algoritma Rsa (Rivest Shamir Adleman) Berbasis Android,” Teknologipintar.org, vol. 3, no. 2, p. 1, 2023.

E. Endaryono, “Perancangan Simulasi Metode Caesar Cipher Menggunakan Microsoft Excel – Alternatif Media Pembelajaran Kriptografi,” SAP (Susunan Artik. Pendidikan), vol. 4, no. 3, 2020, doi: 10.30998/sap.v4i3.6289.

S. Hraoui, F. Gmira, M. F. Abbou, A. J. Oulidi, and A. Jarjar, “A New Cryptosystem of Color Image Using a Dynamic-Chaos Hill Cipher Algorithm,” Procedia Comput. Sci., vol. 148, pp. 399–408, 2019, doi: 10.1016/j.procs.2019.01.048.

R. A. Saputra and A. S. Purnomo, “Implementasi Algoritma Schnorr Untuk Tanda Tangan Digital,” JMAI (Jurnal Multimed. Artif. Intell., vol. 2, no. 1, pp. 21–26, 2018, doi: 10.26486/jmai.v2i1.69.

H. Y. Chen, Z. Y. Wu, T. L. Chen, Y. M. Huang, and C. H. Liu, “Security privacy and policy for cryptographic based electronic medical information system,” Sensors (Switzerland), vol. 21, no. 3, pp. 1–14, 2021, doi: 10.3390/s21030713.

N. Nasron, S. Suroso, and C. Buana, “Rancang Bangun Pengaman Rumah dan Kontrol Pada Kunci Pintu dengan Metode Kriptogafi Hill Cipher Berbasis IoT,” PRotek J. Ilm. Tek. Elektro, vol. 7, no. 2, pp. 104–109, 2020, doi: 10.33387/protk.v7i2.2073.

D. M. Sholahudin and A. Asmunin, “Implementasi Algoritma Hill Cipher untuk Proses Enkripsi dan Dekripsi Citra Berwarna dengan Modifikasi Padding,” J. Informatics Comput. Sci., vol. 1, no. 04, pp. 228–234, 2020, doi: 10.26740/jinacs.v1n04.p228-234.

U. Indriani, H. Gunawan, A. Yugo Nugroho Harahap, and H. Zaharani, “Chat Message Security Enhancement on WLAN Network Using Hill Cipher Method,” 2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM 2020, 2020, doi: 10.1109/CITSM50537.2020.9268838.

E. Safrianti and F. Fitriansyah, “Cryptography with Layered Algorithms for Text Security on Android,” Int. J. Electr. Energy Power Syst. Eng., vol. 3, no. 2, pp. 35–39, 2020, doi: 10.31258/ijeepse.3.2.35-39.

R. Ardhani, M. M. Munir, and A. M. Dawis, “Penerapan Metode Waterfall Dalam Perancangan Sistem Informasi E-Learning Berbasis Web Pada Madrasah Tsanawiyah (Mts) Al-Wusho Rumah Setia Rumah Setia,” J. Innov. Futur. Technol., vol. 5, no. 2, pp. 64–73, 2023, doi: 10.47080/iftech.v5i2.2754.

M. Gobi and B. Arunapriya, “A Survey on Public-Key and Identity-Based Encryption Scheme with Equality Testing over Encrypted Data in Cloud Computing,” vol. 13, no. 2, pp. 2129–2134, 2022.

G. G. Deverajan, V. Muthukumaran, C. H. Hsu, M. Karuppiah, Y. C. Chung, and Y. H. Chen, “Public key encryption with equality test for Industrial Internet of Things system in cloud computing,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 4, pp. 1–15, 2022, doi: 10.1002/ett.4202.

R. Gusmana, Haryansyah, and Adimulya Dyas Wibisono, “Implementasi Algoritma Hill Cipher Menggunakan Kunci Matriks 2x2 Dalam Mengamankan Data Teks,” Gener. J., vol. 7, no. 3, pp. 31–39, 2023, doi: 10.29407/gj.v7i3.21105.

D. Astuti and C. Sundari, “Implementasi Algoritma Vigenere Cipher Untuk Enkripsi Dan Dekripsi Pada Peresepan Data Obat Di Puskesmas Mertoyudan 1 Kabupaten Magelang,” J. Tek. Inf. dan Komput., vol. 5, no. 2, p. 341, 2022, doi: 10.37600/tekinkom.v5i2.534.

Y. W. Hasibuan, R. B. Veronica, J. Matematika, U. N. Semarang, K. S. Gunungpati, and I. Artikel, “How to Cite,” vol. 11, no. 1, pp. 54–68, 2022.

O. Laia, E. M. Zamzami, and Sutarman, “Analysis of Combination Algorithm Data Encryption Standard (DES) and Blum-Blum-Shub (BBS),” J. Phys. Conf. Ser., vol. 1898, no. 1, 2021, doi: 10.1088/1742-6596/1898/1/012017.

R. Hassan, S. Pepic, M. Saracevic, K. Ahmad, and M. Tasic, “A novel approach to data encryption based on matrix computations,” Comput. Mater. Contin., vol. 66, no. 2, pp. 1139–1153, 2020, doi: 10.32604/cmc.2020.013104.

J. H. Sinaga, M. Pangaribuan, F. Fazly, I. Rivaldo, and I. Gunawan, “Penerapan Enkripsi Dan Deskripsi Menggunakan Algoritma Data Encryption Standart Dengan Pemograman Matlab,” J. Media Inform., vol. 4, no. 1, pp. 63–69, 2022, doi: 10.55338/jumin.v4i1.468.

S. Ramadani, “Hybird Cryptosystem Algoritma Hill Cipher Dan Algoritma Elgamal Pada Keamanan Citra,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 4, no. 1, pp. 1–9, 2020, doi: 10.46880/jmika.vol4no1.pp1-9.

Downloads

Published

2025-01-31

Issue

Section

Articles