Clustering Model for OKU Timur Script Images

Authors

  • Liu Toriko Bina Darma University
  • Susan Dian Purnamasari Bina Darma University
  • Yesi Novaria Kunang Bina Darma University
  • Ilman Zuhri Yadi Bina Darma University
  • Andri Andri Bina Darma University

Keywords:

System Information, Information Technology, Computer Science, Science Technology

Abstract

Abstract— The OKU Timur is a regency located in South Sumatra Province. In the OKU Timur region there are many historical heritage sites, one of which is the script. In general, script is a system of symbols for writing language. The OKU Timur script is a writing system that is usually used by the local community. This writing system is characterized by its unique characters and has high historical and aesthetic value for the local community. The OKU Timur script is used in daily communication, traditional ceremonies, historical documents, and various other cultural contexts. This research aims to develop a clustering model that is used to efficiently and accurately group Of OKU Timur script images based on certain characteristics. By using techniques in the field of clustering such as the K-Means algorithm this model is developed so that the clustering of OKU Timur script images is made automatically in order to save time and effort. The study employs the K-Means algorithm to divide the data into several clusters, grouping data with similar characteristics into one cluster and data with different characteristics into another. This research is also expected to contribute to preserving digital culture so that the development of OKU Timur characters can be passed on to future generations.Keywords— OKU Timur Script, Clustering, K-Means

References

E. Roza, “Aksara Arab-Melayu di Nusantara dan Sumbangsihnya dalam Pengembangan Khazanah Intelektual,” TSAQAFAH, vol. 13, no. 1, p. 177, May 2017, doi: 10.21111/tsaqafah.v13i1.982.

R. Alhapizi, M. Nasir, and I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” 2020. [Online]. Available: https://journal-computing.org/index.php/journal-sea/index

A. Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means, T. Tendean, and W. Purba, “Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means,” Jurnal Sains dan Teknologi), vol. 1, no. 2, pp. 5–11.

Sekar Setyaningtyas, B. Indarmawan Nugroho, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 10, no. 2, pp. 52–61, Oct. 2022, doi: 10.21063/jtif.2022.v10.2.52

I. Nyoman and M. Adiputra, “Clustering Penyakit DBD Pada Rumah Sakit Dharma Kerti Menggunakan Algoritma K-Means,” INSERT: Information System and Emerging Technology Journal, vol. 2, no. 2, p. 99, 2021.

M. Benri, H. Metisen, and S. Latipa, “Analisis Clustering Menggunakan Metode K-Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila,” 2015.

T. D. Pangestu, V. Yose Ardila, M. Suteja, and S. P. Barus, “Klasterisasi Hewan berdasarkan Morfologi dengan K-Means Klastering untuk Memudahkan Pemahaman Taksonomi Hewan Klastering Animals based on Morphology with K-Means Klastering to Facilitate Understanding of Animal Taxonomy.”

Published

2024-12-13