Clustering OKU Timur Script Images using VGG Feature extraction and K-Means

Authors

  • Liu Toriko Bina Darma University
  • Susan Dian Purnamasari Bina Darma University
  • Yesi Novaria Kunang Bina Darma University
  • Ilman Zuhri Yadi Bina Darma University
  • Andri Andri Bina Darma University

DOI:

https://doi.org/10.32736/sisfokom.v14i1.2292

Keywords:

System Information, Information Technology, Computer Science, Science Technology

Abstract

This study focuses on the utilization of clustering models to group manuscript images from the OKU Timur region based on specific characteristics. OKU Timur is rich in cultural heritage, including a unique writing system known as the OKU Timur script. The development of intelligent systems technology can be employed to recognize the OKU Timur script. For this purpose, a dataset of OKU Timur script is needed, which will later be used for classifying script images. One of the challenges in preparing the dataset is grouping a large number of script image samples according to the number of characters. A proposed solution in this research is to automatically group script images by applying the K-Means algorithm. The dataset comprises 2,280 images, representing 19 characters and 228 variations with different diacritics. Features are extracted using the VGG16 model, which are then clustered with the K-Means algorithm. Clustering performance is evaluated based on the percentage of correctly grouped characters. For 19 groups (character count), the model achieves an accuracy of 82.6%. For 228 groups (variations and diacritics), it correctly groups 48.16% of characters. Despite the challenges, the results demonstrate the model’s potential for further refinement. This study’s contribution lies in introducing an efficient clustering approach for cultural manuscripts, supporting digital preservation, and advancing automatic recognition of the OKU Timur script. These efforts aim to preserve the script for future generations.

References

E. Roza, “Aksara Arab-Melayu di Nusantara dan Sumbangsihnya dalam Pengembangan Khazanah Intelektual,” TSAQAFAH, vol. 13, no. 1, p. 177, May 2017, doi: 10.21111/tsaqafah.v13i1.982.

R. Alhapizi, M. Nasir, and I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” 2020. [Online]. Available: https://journal-computing.org/index.php/journal-sea/index

A. Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means, T. Tendean, and W. Purba, “Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means,” Jurnal Sains dan Teknologi), vol. 1, no. 2, pp. 5–11.

Sekar Setyaningtyas, B. Indarmawan Nugroho, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 10, no. 2, pp. 52–61, Oct. 2022, doi: 10.21063/jtif.2022.v10.2.52

I. Nyoman and M. Adiputra, “Clustering Penyakit DBD Pada Rumah Sakit Dharma Kerti Menggunakan Algoritma K-Means,” INSERT: Information System and Emerging Technology Journal, vol. 2, no. 2, p. 99, 2021.

M. Benri, H. Metisen, and S. Latipa, “Analisis Clustering Menggunakan Metode K-Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila,” 2015.

T. D. Pangestu, V. Yose Ardila, M. Suteja, and S. P. Barus, “Klasterisasi Hewan berdasarkan Morfologi dengan K-Means Klastering untuk Memudahkan Pemahaman Taksonomi Hewan Klastering Animals based on Morphology with K-Means Klastering to Facilitate Understanding of Animal Taxonomy.”

Downloads

Published

2025-01-31

Issue

Section

Articles