Comparative Analysis of RESTful, GraphQL, and gRPC APIs: Perfomance Insight from Load and Stress Testing

Authors

  • Steven Chandra Faculty of Computer Science and Engineering, Universitas Multi Data Palembang, Indonesia
  • Ahmad Farisi Faculty of Computer Science and Engineering, Universitas Multi Data Palembang, Indonesia

DOI:

https://doi.org/10.32736/sisfokom.v14i1.2315

Keywords:

Fingerprint, Optimization, Classification, VGG-16. CNN

Abstract

Backend constitutes a critical component of digital infrastructure, responsible for processing business logic, managing data, and facilitating communication between software systems. APIs serve as the interface that enables software interaction and plays a pivotal role in backend operations. This study investigates the performance of three API architectures: RESTful, GraphQL, and gRPC. The experimental approach involves the implementation of Load Testing and Stress Testing to assess the performance of these architectures. The experiment utilizes a dedicated server and client hardware to simulate real- world conditions, with parameters such as CPU usage, memory usage, response time, load time, latency, success rate, and failure rate evaluated using a dataset comprising 1,000 rows of student- related records. Result show that RESTful achieves the highest total request but exhibit greater resource consumption and a higher failure rate. GraphQL demonstrated better CPU and memory efficiency with strong stability, though it has higher latency and slower response times. gRPC strikes a balance with a moderate latency and resource usage, albeit with slightly higher memory consumption under stress. By presenting a comprehensive analysis of each API architecture, this study contributes a comprehensive performance analysis under practical testing scenarios giving developers and system architect with data-driven guidance for selecting API architecture to their application needs. RESTful is well suited for high-throughput scenarios with less critical operations, GraphQL excels in resource efficiency and stability, and gRPC offers balanced performance across diverse workloads.

References

Albahli, Saleh, 2020, Detection of Coronavirus Disease From X-Ray Images Using Deep Learning and Transfer Learning Algorithms, Journal of X-Ray Science and Technology, Saudi arabia.

Andreansyah, Agus, Rika F, M. Jumnahdi., 2019, Pengenalan Pola Sidik Jari Menggunakan Multi-Class Support Vector Machine, Jurnal Elkha, pp. 79-84.

Andreea Monica Dinca, Lazarescu. dkk., 2022, A Fingerprint Matching Algorithm Using the Combination of Edge Features and Convolution Neural Network, MDPI Inventions, Romania, Pp. 39.

Arnita, Faridawaty, dkk, 2022, Computer Vision dan Pengolahan Citra Digital, ISBN 978-623-8230-27-3, Pustaka Aksara.

B. Bakhshi dan H, Veisi, 2017, End to End Fingerprint Verification Based on Convolutional Neural Network, in 27th Iranian Conference on Electrical Engineering (ICEE2019), Tehran, pp. 1994 -1998.

Cholussodin, Imam et al, 2020, Buku Ajar AI, Machine Learning & Deep Learning, Filkom, Universitas Brawijaya.

Cimtay, Yucel et al, 2021, Fingerprint Pattern Classification by Using Various Pre-Trained Deep Learning Networks, European Journal of Science and Technology (EJOSAT), Special Issue 24, pp. 258-261.

Emil Naf’an, et al, 2022, Dasar-dasar Deep Learning dan Contoh Aplikasinya, Penerbit: CV. Mitra Cendekia Media, Sumatra Barat.

Garg, Reena et al, 2024, Fingerprint Recognition Using Convolution Neural Network with intevesion and augmented techniques, Journal Elsevier, India.

Hadaris, Arisy Nabawi, 2020, Modul Daktiloskopi antara Tantangan, Peluang dan Harapan, Badan Pengembangan Sumber Daya Manusia Hukum dan Hak Asasi Mnausia Kementerian Hukum dan Hak Asasi Manusia Republik Indonesia, ISBN 978-623-6869-37-6, Percetakan Pohon Cahaya.

Hidayatullah, priyanto., 2023, Buku Sakti Deep Learning, Penerbit Stunning Vision AI Academy.

Hirsi Mohamed, 2021, Fingerprint Classification Using Deep Convolutional Neural Network, ISSN: 2329-1613, Journal of Electrical and Electronic Engineering, Turkey.

Indonesia, Undang-Undang tentang Kitab Undang-Undang Hukum Acara Pidana, UU No. 8 Tahun 1981, LN No. 76 Tahun 1981, Psl. 184.

Irsyad, Rahadian, 2018, Penggunaan Python Web Framework Flask untuk Pemula, Laboratorium Telematika, Institut Teknologi Bandung,

Liyananta, Mohammad et al, 2024, Klasifikasi Tumor Otak Menggunakan CNN dengan Arsitektur Resnet 50, Prosiding Seminar Nasional Teknologi dan Sains, Universitas Nusantara PGRI Kediri.

M. Galar et al, 2015, A Survey of Fingerprint Classification Part II: Experimental Analysis and ensemble proposal, Knowledge Based Systems, Vol. 81, pp. 98-116.

Purba, Nelvitia., Amran Basri, dkk., 2017, Kejahatan dan Penjahat dari Aspek Kriminologi, Mahara Publishing, ISBN 978-602-6914-78-1, Tanggerang, Banten.

Putra, Jan Wira Gotama, 2020, Pengenalan Konsep Pembelajaran Mesindan Deep Learning, wiragotama.github, Tokyo, Jepang.

Raharjo, Budi, 2022, Deep Learning dengan python, Penerbit: Yayasan Prima, ISBN: 978-623-5734-33-0, Semarang.

Ramesh Chandra Sahoo, dkk. 2019. Application of Deptwise Separable Convolutional Neural Network for Distorted Fingerprint Images, International Journal of control and automation. Vol. 12, No.6, pp. 448-455.

Sidik, Farih Maulana, 2024, 8 Kasus Pembunuhan Bikin Geger dalam Dua Pekan Terakhir, detiknews, diakses pada tanggan 8 Juni 2024 pada laman https://news.detik.com/berita/d-7334539/8-kasus-pembunuhan-bikin-geger-dalam-2-pekan-terakhir/1

Santoso, Joseph Teguh, 2022, Proyek Coding dengan Python, Penerbit: Yayasan Prima, ISBN: 978-623-5734-31-6, Semarang.

Satriawan, Akbar Muhammad dan Wijang, 2023, Klasifikasi Pengenalan Wajah untuk Mengetahui Jenis Kelamin Menggunakan Metode Convolutional Neural Network, Jurnal Algoritma, Vol. 4, No. 1, pp. 43-52.

Shrestha and B.K Malla, 2019, Study of Fingerprint Pattern in Population of a Community, J Nepal Med Assoc, Vol. 57 No. 219.

Supardi, Julian and Shi-Jinn Horng, 2019, Very Small Image Face Recognition Using Deep Convolutional Neural Network, Journal of Physisc: Conference Series 1196 (ICONISCSE).

Syarif Hartawan, Muhammad., Suhardjono, dkk., 2022, Digital Forensik, ARS Trainning,

Triwani, Pemeriksaan Dermatoglifi sebagai Alat Identifikasi dan Diagnostik, Fakultas Kedokteran, Universitas Sriwijaya, Palembang.

Downloads

Published

2025-01-31

Issue

Section

Articles