Prediction of Claim Fund Reserves in Insurance Companies Using the ARIMA Method

Authors

  • Goenawan Brotosaputro Faculty of Information Technology, ISB Atma Luhur Pangkalpinang
  • Yohanes Setiawan Japriadi Faculty of Information Technology, ISB Atma Luhur Pangkalpinang
  • Wiwin Windihastuty Faculty of Information Technology, Budi Luhur University
  • Rivai Ahsani Faculty of Information Technology, Budi Luhur University

DOI:

https://doi.org/10.32736/sisfokom.v14i1.2331

Keywords:

prediction, classification, claim, ARIMA, insurance

Abstract

company which is stated in the form of an insurance policy. Prediction of insurance claim reserve funds is necessary because the claim amount varies and the claim time can be the same. If at any time there is a claim that is so large that it exceeds the available claim reserve fund plus the claim occurs at the same time, it can cause the company to fail to pay the claim. This will certainly make the company's conduct decline, customer trust will be lost, and can cause the company to go bankrupt. The problem can be solved if the insurance company has sufficient claim fund reserves. Claim fund reserves are an important issue in insurance companies. This study aims to predict the claim fund reserves in insurance companies to anticipate varying claim amounts. Historical analysis of the value of claims with the ARIMA model approach is used to predict future claim values. We use claim value data that has been scaled in millions. 2020 to 2022 as training data and 2023 as test data. The Root Mean Square Error (RMSE) metric obtained is IDR 25,780.71; Mean Absolute Deviation (MAD) of IDR 14,421.89, and Mean Absolute Percentage Error (MAPE) of IDR 5,967.27; while the total actual claim value in 2023 is IDR 161,700.51 and the total predicted claim value is IDR 166,227.36; which means that an accuracy of 97% is obtained. The result of claim prediction value in one periodic year can give a favor to the management to make a decision, how much the claim funds should be prepared.

References

A. W. Avrizal and E. Junianto, “Prediksi Kebangkrutan Perusahaan Menggunakan Algoritma Decision Tree Berbasis Teknik Resampling,” eProsiding Tek. Inform., vol. 4, no. 1, pp. 101–109, 2023, [Online]. Available: https://eprosiding.ars.ac.id/index.php/pti/article/view/919/403.

H. Saleh, “Prediksi Kebangkrutan Perusahaan Menggunakan Algoritma C4.5 Berbasis Forward Selection,” Ilk. J. Ilm., vol. 9, no. 2, pp. 173–180, 2017, doi: 10.33096/ilkom.v9i2.97.173-180.

S. Bahri and N. Widyawati, “Analisis Prediksi Kabangkrutan Pada Perusahaan Yang Di- Delisting Di BEI,” J. Ilmu dan Ris. Manaj., vol. 4, no. 8, pp. 3–22, 2015, [Online]. Available: http://journal.stieputrabangsa.ac.id/index.php/jimmba/index.

R. A. Nurdini, Y. Priyadi, and . N., “Analisis Prediksi Kebangkrutan Perusahaan Menggunakan Artificial Neural Network Pada Sektor Pertambangan Batubara,” J. Sist. Inf. Bisnis, vol. 8, no. 1, p. 107, 2018, doi: 10.21456/vol8iss1pp107-114.

Y. Hikmah and I. R. Hikmah, “Perhitungan Cadangan Klaim Dengan Metode Chain Ladder Menggunakan Excel Dan Rstudio,” MAp (Mathematics Appl. J., vol. 4, no. 2, pp. 122–131, 2022, doi: 10.15548/map.v4i2.4837.

D. M. Putri and Aghsilni, “Estimasi Model Terbaik Untuk Peramalan Harga Saham PT. Polychem Indonesia Tbk Dengan Arima,” MAp J., vol. 1, no. 1, pp. 1–12, 2019.

M. Jia, H. Xu, and S. Zhang, Comparison Analysis of ARIMA and Machine Learning Methods for Predicting Trend of US Semiconductor Stocks, vol. 1. Atlantis Press International BV, 2022.

M. S. Fahmuddin and S. M. Sri Mustika, “Perbandingan Metode ARIMA dan Single Exponential Smoothing dalam Peramalan Nilai Ekspor Kakao Indonesia,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 5, no. 3, pp. 163– 176, 2023, doi: 10.35580/variansiunm193.

E. Munarsih and I. Saluza, “Comparison of exponential smoothing method and autoregressive integrated moving average (ARIMA) method in predicting dengue fever cases in the city of Palembang,” J. Phys. Conf. Ser., vol. 1521, no. 3, 2020, doi: 10.1088/1742-6596/1521/3/032100.

X. Zhang, Q. Zhou, S. Weng, and H. Zhang, “ARIMA Model-Based Fire Rescue Prediction,” Sci. Program., vol. 2021, 2021, doi: 10.1155/2021/3212138.

S. Macdonald and N. Headlam, Research methods handbook :

introductory guide to research methods for social research. 2008.

G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control. John Wiley and Sons Inc., 2015.

Downloads

Published

2025-01-31

Issue

Section

Articles