Clustering Snack Products Based on Nutrition Facts Using SOM and K-Means for Diabetic Dietary Recommendation

Authors

  • Maritza Adelia Department of Statistics, Faculty of Mathematics and Natural Science, Universitas Islam Indonesia
  • Arum Handini Primandari Department of Statistics, Faculty of Mathematics and Natural Science, Universitas Islam Indonesia

DOI:

https://doi.org/10.32736/sisfokom.v14i2.2342

Keywords:

Clustering SSF, nutrition facts, snack healthy labe, SOM

Abstract

The number of diabetics in Indonesia continues to rise, with Type II Diabetes Mellitus (DM) dominating 90% of cases. One of the main contributors is the excessive consumption of snack products high in Sugar, Salt, and Fat (SSF), which increases health risks, particularly for diabetics. However, the current nutrition facts provided in the product package is not easy to understand. Creating label for the product can make an effective information to assist people on buying decision. This study aims to segment snack products based on their nutritional facts, particularly focusing on their SSF content, to identify products that are potentially high-risk for diabetics. In this study, data on the nutritional facts of snack products were analyzed. Utilizing a hexagonal Self-Organizing Map (SOM) topology with a 5 × 9 grid, the best clustering method identified was k-means. This method yielded two clusters, with a silhouette index of 0.44, a Dunn index of 0.09, and a connectivity index of 11.14. The first cluster comprises 165 products that have low levels of total fat, saturated fat, sugar, and salt. In contrast, the second cluster consists of 46 products with high total fat and saturated fat content, and this cluster is of particular concern due to its elevated levels of these unhealthy fats. The segmentation results can serve as a reference for more intuitive food labeling, potentially improving consumer awareness and aiding in dietary decision-making, particularly for diabetics.

References

International Diabetes Federation, IDF Diabetes Atlas, 10th edn., Brussels, 2021.

A. A. I. P. Wahyuni, "Konsumsi Gula, Garam, Lemak (GGL) Berlebihan Adalah "MAUT"," 12 September 2024. [Online]. Available: https://yankes.kemkes.go.id/view_artikel/3633/reqwest/index.

E. Masri, N. S. Nasution and R. Ahriyasna, "Literasi Gizi dan Konsumsi Gula, Garam, Lemak pada Remaja di Kota Padang," Jurnal Kesehatan, vol. 10, no. 1, pp. 23-30, 2022.

BPOM, "Gerakan Membaca Label Pangan," 8 Maret 2016. [Online]. Available: https://www.pom.go.id/berita/gerakan-membaca-label-pangan.

BPOM, "BPOM Dukung Penuh Pencantuman Nutri-Level pada Pangan Olahan Secara Bertahap," 23 September 2024. [Online]. Available: https://www.pom.go.id/berita/bpom-dukung-penuh-pencantuman-nutri-level-pada-pangan-olahan-secara-bertahap.

I. Dermawan, A. Salma, Y. Kurniawati and T. O. Mukhti, "Implementation of the Self Organizing Maps (SOM) Method for Grouping Provinces in Indonesia based on the Earthquake Disaster Impact," UNP Journal of Statistics and Data Science, vol. 1, no. 4, pp. 337-343, 2023.

N. Y. Kusrahman, I. Purnamasari and F. D. T. Amijaya, "Optimasi Self-Organizing Map Menggunakan Particle Swarm Optimization untuk Mengelompokkan Desa/Kelurahan Tertinggal di Kabupaten Kutai Kartanegara Provinsi Kalimantan Timur," Jurnal Eksponensial, vol. 11, no. 2, pp. 139-144, 2020.

B. Pangestu, D. Purwitasari and C. Fatichah, "Visualisasi Similaritas Topik Penelitian dengan Pendekatan Kartografi Menggunakan Self-Organizing Maps (SOM)," Jurnal Teknik ITS, vol. 6, no. 2, pp. 2337-3520, 2017.

Sugiyono, Metode Penelitian Kuantitatif, Kualitatif, dan R&D, Bandung: ALFABETA, 2019.

P. P. Allorerung, A. Erna, M. Bagussahrir and S. Alam, "Analisis Performa Normalisasi Data untuk Klasifikasi K-Nearest Neighbor pada Dataset Penyakit," JISKA (Jurnal Informatika Sunan Kalijaga), vol. 9, no. 3, pp. 178-191, 2024.

S. J. A. Sumarauw, Data Mining Model Self-Organizing Maps (SOMs), Yogyakarta: Bintang Semesta Media, 2022.

I. Rojas, G. Joya and A. Catala, Advances in Computational Intelligence: 13th International Work-Conference on Artificial Neural Networks, IWANN 2015, Palma de Mallorca, Spain, June 10-12, 2015. Proceedings, Part II, Spain: Springer, 2015.

D. Miljković, "Brief review of self-organizing maps," 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1061-1066, 2017.

I. G. Santos, V. Q. Carneiro, A. C. S. Junior, C. D. Cruz and P. C. Soares, "Self-organizing maps in the study of genetic diversity among irrigated rice genotypes," Acta Scientiarum. Agronomy, vol. 41, pp. 1-9, 2019.

S. Kania, D. Rachmatin and J. A. Dahlan, "Program Aplikasi Pengelompokkan Objek dengan Metode Self Organizing Map Menggunakan Bahasa R," Jurnal Eurekamatika, vol. 7, no. 2, pp. 17-29, 2019.

V. Nellie, V. C. Marwadi and N. J. Perdana, "Implementasi Metode Agglomerative Hierarchical Clustering Untuk Sistem Rekomendasi Film," Jurnal Ilmu Komputer dan Sistem Informasi, vol. 11, no. 1, pp. 1-6, 2023.

A. T. R. Dani, S. Wahyuningsih and N. A. Rizki, "Penerapan Hierarchical Clusterinfg Metode Agglomerative pada Data Runtun Waktu," Jambura Journal of Mathematics, vol. 1, no. 2, pp. 64-78, 2019.

R. Sarno, S. I. Sabilla, Malikhah, Purbawa and Ardani, Machine Learning Deep Learning Konsep dan Pemrograman Python, Yogyakarta: Penerbit ANDI, 2023.

A. R. Gunawan, Sudarmin and Z. Rais, "Applied the Self-Organizing Maps (SOM) Method for Clustering Educational Equity in South Sulawesi," ARRUS Journal of Mathematics and Applied Science, vol. 4, no. 1, pp. 6-19, 2024.

D. A. I. C. Dewi and D. A. K. Pramita, "Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali," Jurnal Matrix, vol. 9, no. 3, pp. 102-109, 2019.

N. Thamrin and A. W. Wijayanto, "Comparison of Soft and Hard Clustering: A Case Study on Welfare Level in Cities on Java Island," Indonesian Journal of Statistics and Its Applications, vol. 5, no. 1, pp. 141-160, 2021.

A. Muhid, Analisis Statistik Edisi ke-2, Sidoarjo: Zifatama Jawara, 2019.

H. Khusnuliawati, "Algoritma Pengelompokkan Menggunakan Self-Organizing Map dan K-Means pada Data Sumber Daya Manusia Provinsi Indonesia," Jurnal Gaung Informatika, vol. 11, no. 1, pp. 1-9, 2018.

N. Husna, F. Hanum and M. F. Azrial, "Pengelompokkan Produk Kemasan yang harus Dihindari Penderita Diabetes Menggunakan Algoritma K-Means Clustering," InfoTekJar: Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 4, no. 1, pp. 167-174, 2019.

Downloads

Published

2025-05-26

Issue

Section

Articles