Implementasi Algoritma Apriori Untuk Menentukan Stok Obat

Authors

  • Winanda Delrinata STMIK Nusa Mandiri
  • Fernando B Siahaan Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.32736/sisfokom.v9i2.875

Keywords:

data mining, a priori algorithm, drug inventory

Abstract

The supply of drugs in a pharmacy is very important to maintain the fulfillment of consumer needs based on a doctor's prescription. Problems arise due to limitations on the expiry date of each drug, this needs to be overcome so that there is no buildup of drug stocks at the pharmacy so that it causes losses because there are types of drugs that have expired in sufficient quantities, therefore we need data mining that can determine which pattern of drug type works best, using a priori algorithm. The association method is needed to see the correlation between a number of attributes for example if a consumer buys drug A then he will buy drug B as well. A priori analysis to determine the minimum conditions for support and confidence. The conclusion of this research is that if you buy amlodipine 5 mg, you will buy sanmol, this is obtained from 33.33% support and 66.66% confidence, if you buy 500 mg amoxan, you will buy sanmol with a support value of 41.66% and confidence 71, 42% and if you buy sanmol, you will buy amoxan 500 mg with a support value of 41.66% and confidence 62.50%.

References

A. Valerian and L. Hakim, “Implementasi Algoritma Apriori Untuk Prediksi Stok Peralatan Tulis Pada Toko XYZ,” J. Ilm. Teknol. Inf. Terap., vol. V, no. 1, pp. 18–22, 2018.

M. R. Maulana, K. Kunci, : Sistem, P. Keputusan, and P. K. Karyawan, “PENILAIAN KINERJA KARYAWAN DI IFUN JAYA TEXTILE DENGAN METODE FUZZY SIMPLE ADDITIVE WEIGHTED,” J. Ilm. ICTech, no. 1, 2012.

R. Yanto and R. Khoiriah, “Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat,” Creat. Inf. Technol. J., vol. 2, no. 2, p. 102, 2015.

Moh.Sholik and A. Salam, “Implementasi Algoritma Apriori untuk Mencari Asosiasi Barang yang Dijual di E-commerce OrderMas,” Techno.COM, vol. 17, no. 2, pp. 158–170, 2018.

A. Nursikuwagus and T. Hartono, “Implementasi Algoritma Apriori Untuk Analisis Penjualan Dengan Berbasis Web,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 7, no. 2, p. 701, 2016.

E. Buulolo, “Algoritma Apriori Pada Data Penjualan Di Supermarket,” Semin. Nas. Inov. dan Teknol. Inf. 2015, vol. 2015, no. September 2015, pp. 53–55, 2015.

D. Listriani, A. H. Setyaningrum, and F. Eka, “PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN (Studi Kasus Toko Buku Gramedia Bintaro),” J. Tek. Inform., vol. 9, no. 2, pp. 120–127, 2018.

S. Kanti and R. E. Indrajit, “Implementasi Data Mining Penjualan Handphone Oppo Store Sdc Tanggerang Dengan Algoritma Appriori,” Semin. Nas. Sains dan Teknol., no. November, pp. 1–2, 2017.

Kusrini and E. T. Luthfi, Algoritma Data Mining. Yogyakarta: Andi Offset, 2009.

F. A. Hermawati, Data Mining. Yogyakarta: Andi, 2013.

F. A. Sianturi, “Penerapan Algoritma Apriori Untuk Penentuan Tingkat Pesanan,” Mantik Penusa, vol. 2, no. 1, pp. 50–57, 2018.

Downloads

Published

2020-07-10

Issue

Section

Articles