Data Induk Mahasiswa sebagai Prediktor Ketepatan Waktu Lulus Menggunakan Algoritma CART Klasifikasi Data Mining

Authors

  • Arief Jananto Universitas Stikubank (UNISBANK) Semarang
  • Sulastri Sulastri Universitas Stikubank (UNISBANK) Semarang
  • Eko Nur Wahyudi Universitas Stikubank (UNISBANK) Semarang
  • Sunardi Sunardi Universitas Stikubank (UNISBANK) Semarang

DOI:

https://doi.org/10.32736/sisfokom.v10i1.991

Keywords:

Klasifikasi, CART, Gini Index, Data Mining

Abstract

Fakultas Teknologi Informasi Universitas Stikubank (UNISBANK) as one of the faculties in higher education in implementing learning activities has produced a lot of stored data and has graduated many students. The level of timeliness of graduation is important for study programs as an assessment of success. This research tries to dig up the pile of student parent data and graduation data in order to get the pass rate and graduation prediction of active students. By implementing the classification data mining technique and the CART algorithm, it is hoped that a decision tree can be used to predict the class timeliness of graduating from active students. By using the graduation data and student parent data totaling 1018 records, a decision tree model was obtained with an accuracy rate of 63% from the data testing test. Determination of split nodes using the Gini Index which breaks the dataset based on its impurity value. Tests conducted in this study show that the order of the variables in the decision tree is gender, origin school status, parental education, age at entry, city of birth, parent's occupation. The prediction with the resulting model is that 71% of active S1 Information Systems students can graduate on time and 51% for S1 Informatics Engineering students.

References

Pemerintah-Indonesia, “Undang-Undang RI No 12 Tahun 2012 Tentang Pendidikan Tinggi.” 2012.

I. Farida and S. W. H. L. Hendric, “Prediksi Pola Kelulusan Mahasiswa Menggunakan Teknik Data Mining Classification Emerging Pattern,” Petir, vol. 12, no. 1, pp. 1–17, 2019, doi: 10.33322/petir.v12i1.414.

E. T. Kursini, Luthfi, Algoritma Data Mining. Yogyakarta: Andi Offset, 2009.

M. winny Amelia, A. S. . Lumenta, and A. Jacobus, “Prediksi Masa Studi Mahasiswa dengan Menggunakan Algoritma Naïve Bayes,” J. Tek. Inform., vol. 11, no. 1, 2017, doi: 10.35793/jti.11.1.2017.17652.

M. Fendjalang, “Klasifikasi Variabel Penentu Kelulusan Mahasiswa FMIPA Unpatti Menggunakan Metode CHAID,” Statistika, vol. 15, no. 1, pp. 1–6, 2015.

D. H. Kamagi and S. Hansun, “Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan Mahasiswa,” J. Ultim., vol. 6, no. 1, pp. 15–20, 2014, doi: 10.31937/ti.v6i1.327.

S. M. Andri, Yesi Novaria Kunang, “Implementasi Teknik Data Mining Untuk Memprediksi Tingkat Kelulusan,” vol. 2013, no. June 2016, pp. 56–63, 2013.

E. T. Novalyn, G. Ginting, and H. K. Siburian, “Omset Pakaian Pria Remaja ( Studi Kasus : Pt . Matahari Department Store Thamrin Plaza Medan ),” vol. 17, pp. 436–443, 2018.

F. Nasari and S. Darma, “PENERAPAN K-MEANS CLUSTERING PADA DATA PENERIMAAN MAHASISWA BARU (STUDI KASUS : UNIVERSITAS POTENSI UTAMA),” in Seminar Nasional Teknologi Informasi dan Multimedia, 2015, pp. 6–8.

N. Wijaya and A. Ridwan, “Klasifikasi Jenis Buah Apel Dengan,” Sisfokom, vol. 08, no. 1, pp. 74–78, 2019.

A. Shiddiq, R. K. Niswatin, and I. N. Farida, “Analisa Kepuasan Konsumen Menggunakan Klasifikasi Decision Tree Di Restoran Dapur Solo (Cabang Kediri),” Gener. J., vol. 2, no. 1, p. 9, 2018, doi: 10.29407/gj.v2i1.12051.

Y. Y. W, “Perbandingan Performansi Algoritma Decision Tree C5 . 0 , Cart ,” Seminar, vol. 2007, no. Snati, pp. 0–3, 2007.

N. Nafi’iyah, “Algoritma Cart Dalam Penentuan Pohon Keputusan,” J. SPIRIT, vol. 7, no. 2, 2015.

R. W. Ningrat and B. Santosa, “Pemilihan Diet Nutrien bagi Penderita Hipertensi Menggunakan Metode Klasifikasi Decision Tree (Studi Kasus: RSUD Syarifah Ambami Rato Ebu Bangkalan),” J. Tek. Its, vol. VOL.1, no. 1, pp. 536–539, 2012.

M. Yusa, E. Utami, and E. Luthfi. Taufiq, “Evaluasi Performa Algoritma Klasifikasi Decision Tree ID3, C4.5, dan CART Pada Dataset Readmisi Pasien Diabetes,” InfoSys J., vol. 4, no. 1, pp. 23–34, 2016.

S. Hendrian, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan,” Fakt. Exacta, vol. 11, no. 3, pp. 266–274, 2018, doi: 10.30998/faktorexacta.v11i3.2777.

Downloads

Published

2021-02-22

Issue

Section

Articles