Liver Disease Classification Using the Elbow Method to Determine Optimal K in the K-Nearest Neighbor (K-NN) Algorithm

Authors

  • Ihya' Nashirudin Abrar Universitas Muhammadiyah Pontianak
  • Asrul Abdullah Universitas Muhammadiyah Pontianak
  • Sucipto Sucipto Universitas Muhammadiyah Pontianak

DOI:

https://doi.org/10.32736/sisfokom.v12i2.1643

Keywords:

Classification, Machine Learning, Elbow Method, KNN, Liver

Abstract

Diagnosing liver disease in the field of healthcare is not an easy task. However, by utilizing medical records as datasets and applying data mining methods such as K-Nearest Neighbor (K-NN), we can analyze and extract knowledge automatically. The K-NN method has proven to be more effective compared to other methods as it clusters new information by selecting the nearest neighbors based on the value of k. In this study, we employed the Elbow method to determine the optimal value of k by measuring the error rate. The test results revealed that the optimal value of k was found to be 4, with the lowest error rate. In the third test, we achieved a training accuracy of 80.5% and a testing accuracy of 78.9%. After fine-tuning the training data, we were able to improve the accuracy to 82.2% for training and 77.1% for testing. However, in the fourth test, we encountered overfitting issues due to data imbalance caused by inappropriate resampling, resulting in a model that was overly complex and prone to excessive noise.

References

J. Tandi, “Pola Penggunaan Obat Pada Pasien Penyakit Hati Yang Menjalani Rawat Inap Di Rumah Sakit Umum Daerah Undata Palu,” Perspekt. J. Pengemb. Sumber Daya Insa., vol. 2, no. 2, pp. 218–223, 2017.

A. Noviriandini, P. Handayani, and Syahriani, “Prediksi Penyakit Liver Dengan Menggunakan Metode,” Pros. TAU SNAR-TEK Semin. Nas. Rekayasa dan Teknol., no. November, pp. 75–80, 2019.

Rudianto, “Penentuan Penyakit Peradangan Hati Dengan Menggunakan Neural Network Backpropagation,” Indones. J. Comput. Inf. Technol. Vol 1 No 1, vol. 1, no. 1, pp. 27–33, 2016.

I. R. Hikmah and R. N. Yasa, “Perbandingan Hasil Prediksi Diagnosis pada Indian Liver Patient Dataset (ILPD) dengan Teknik Supervised Learning Menggunakan Software Orange,” J. Telemat., vol. 16, no. 2, pp. 69–76, 2021.

A. Muzakir and R. A. Wulandari, “Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree,” Sci. J. Informatics, vol. 3, no. 1, pp. 19–26, 2016, doi: 10.15294/sji.v3i1.4610.

J. Suntoro, “22-DATA MINING Algoritma dan Implementasi Menggunakan Bahasa Pemrograman PHP,” DATA Min. Algoritm. dan Implementasi Menggunakan Bhs. Pemrograman PHP, vol. 9, no. 9, pp. 259–278, 2019.

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019, doi: 10.31940/matrix.v9i3.1662.

M. S. Mustafa and I. W. Simpen, “Implementasi Algoritma K-Nearest Neighbor ( KNN ) Untuk Memprediksi Pasien Terkena Penyakit Diabetes Pada Puskesmas Manyampa Kabupaten Bulukumba,” Pros. Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. VIII, no. 1, pp. 1–10, 2019, [Online]. Available: https://ejurnal.dipanegara.ac.id/index.php/sisiti/article/view/1 -10

M. R. F. Rizki, “Perbandingan Algoritma Klasifikasi Untuk Prediksi Penyakit Liver,” Reputasi J. Rekayasa Perangkat Lunak, vol. 1, no. 2, pp. 82–88, 2020, doi: 10.31294/reputasi.v1i2.109.

I. Setiawati, A. P. Wibowo, and A. Hermawan, “Pendahuluan Tinjauan Pustaka Penelitian Sebelumnya Klasifikasi,” J. Inf. Syst. Manag., vol. 1, no. 1, pp. 13–17, 2019.

E. Patimah, V. B. Haekal, and D. Sandya Prasvita, “Klasifikasi Penyakit Liver dengan Menggunakan Metode Decision Tree,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, vol. 2, no. 1, pp. 655–659, 2021.

Prabiantissa Citra Nurina, “Klasifikasi pada Dataset Penyakit HatiMenggunakan Algoritma Support Vector Machine, K-NN, dan Naïve Bayes,” Semin. Nas. Tek. Elektro, Sist. Informasi, dan Tek. Inform., vol. 1, no. 1, pp. 263–268, 2021.

S. Hendrian, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan,” Fakt. Exacta, vol. 11, no. 3, pp. 266–274, 2018, doi: 10.30998/faktorexacta.v11i3.2777.

G. A. Marcoulides, Discovering Knowledge in Data: an Introduction to Data Mining, vol. 100, no. 472. 2005. doi: 10.1198/jasa.2005.s61.

M. M. Hidayat, “Data Mining Data mining,” Min. Massive Datasets, vol. 2, no. January 2013, pp. 5–20, 2015, [Online]. Available: https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part

M. A. Muslim et al., “Data Mining Algoritma C4.5 Disertai contoh kasus dan penerapannya dengan program computer,” Nucl. Phys., vol. 13, no. 1, pp. 104–116, 2019.

D. Turban, Efraim ; Aronson, Jay E ; Liang, Ting peng ; Prabantini, “Decision Support Systems And Intelligent Systems : ( Sistem Pendukung Keputusan Dan Sistem Cerdas ) / Efraim Turban,” 2005.

A. Fitria and H. Azis, “Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 102–106, 2018.

M. Lestari, “Penerapan Algoritma Klasifikasi Nearest Neighbor (K-NN) untuk Mendeteksi Penyakit Jantung,” Fakt. Exacta, vol. 7, no. September 2010, pp. 366–371, 2014.

A. P. W. Anjar Wanto, Muhammad Noor Hasan Siregar, N. L. W. S. R. G. Dedy Hartama, M. R. L. Darmawan Napitupulu, Edi Surya Negara, and C. P. Sarini Vita Dewi, Data Mining Algoritma & Implementasi. 2020.

M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, 2018, doi: 10.1088/1757-899X/336/1/012017.

R. Yuliana Sari, H. Oktavianto, and H. Wahyu Sulistyo, “Algoritma K-Means Dengan Metode Elbow Untuk Mengelompokkan Kabupaten/Kota Di Jawa Tengah Berdasarkan Komponen Pembentuk Indeks Pembangunan Manusia,” J. Smart Teknol., vol. 3, no. 2, pp. 2774–1702, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST

D. Putra and A. Wibowo, “Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes,” Pros. Semin. Nas. Ris. Dan Inf. Sci., vol. 2, pp. 84–92, 2020.

J. Ha, M. Kambe, and J. Pe, Data Mining: Concepts and Techniques. 2011. doi: 10.1016/C2009-0-61819-5.

A. Géron, Hands-on Machine Learning whith Scikit-Learing, Keras and Tensorfow. 2019.

W. A. Firmansyach, U. Hayati, and ..., “Analisa Terjadinya Overfitting Dan Underfitting Pada Algoritma Naive Bayes Dan Decision Tree Dengan Teknik Cross Validation,” JATI (Jurnal Mhs. …, vol. 7, no. 1, 2023, [Online]. Available: https://ejournal.itn.ac.id/index.php/jati/article/view/6329%0Ahttps://ejournal.itn.ac.id/index.php/jati/article/download/6329/3678

G. Szabo, G. Polatkan, O. Boykin, and A. Chalkiopoulos, Social Media Data Mining and Analytics [Minería y análisis de datos de medios sociales]. 2019.

S. M. Faradisa, T. D. Nugrahadi, Muliadi, I. Budiman, and D. Kartini, “Implementasi IQR-SMOTE Untuk Mengatasi Ketidakseimbangan Kelas Pada Klasifikasi Diabetes menggunakan K-Nearest Neighbors,” vol. 15, pp. 48–60, 2021.

R. Agustika, “Penerapan Kombinasi SMOTE dan Tomek Links untuk Klasifikasi Data Tidak Seimbang dengan Metode Random Forest,” 2021, [Online]. Available: http://etd.repository.ugm.ac.id/penelitian/detail/199065

Z. Maisat, E. Darmawan, and A. Fauzan, “Implementasi Optimasi Hyperparameter GridSearchCV Pada Sistem Prediksi Serangan Jantung Menggunakan SVM Implementation of GridSearchCV Hyperparameter Optimization in Heart Attack Prediction System Using SVM,” vol. 13, no. 1, pp. 8–15, 2023.

Downloads

Published

2023-07-01

Issue

Section

Articles