EEG Signal Classification of Motor Imagery Right and Left Hand using Common Spatial Pattern and Multilayer Perceptron Back Propagation

Synatria Subekti(1), Rahmat Widadi(2*), Dodi Zulherman(3)

(1) Faculty of Telecommunication and Electrical Engineering, Institut Teknologi Telkom Purwokerto
(2) Faculty of Telecommunication and Electrical Engineering, Institut Teknologi Telkom Purwokerto
(3) Faculty of Telecommunication and Electrical Engineering, Institut Teknologi Telkom Purwokerto
(*) Corresponding Author


The number of people with disabilities is increasing, so it requires bionic devices to replace human motor functions. Brain-Computer Interface (BCI) can be a tool for the bionic device to communicate with the brain. Signal brain or Electroencephalogram (EEG) signal need to classify to drive the corresponding bionic device. This research goal is to classify the imagination of the right and left-hand movements based on the EEG signal. The system design in this research consists of EEG channel selection using Finite Impulse Response (FIR) filter, feature extraction using Common Spatial Pattern (CSP), and classification using Multilayer Perceptron Back Propagation (MLP-BP). The data used a secondary dataset from BCI Competition IV (2b) with 9 research subjects. The research scenario is carried out by trying to use several variations in the number of hidden layer nodes on each EEG channel. Based on the test, the best accuracy for MLP-BP is 68.7% using 24 nodes in the alpha channel.


BCI, CSP, EEG, FIR, MLP-BP, motor imagery

Full Text:



H. Jia, S. Wang, D. Zheng, X. Qu, and S. Fan, “Comparative study of motor imagery classification based on BP-NN and SVM,” J. Eng., vol. 2019, no. 23, pp. 8646–8649, 2019.

J. R. Wolpaw et al., “Brain–Computer Interface Technology: A Review of the First International Meeting,” IEEE Trans. Rehabil. Eng., vol. 8, no. 2, pp. 164–173, 2000.

R. Alazrai, M. Abuhijleh, H. Alwanni, and M. I. Daoud, “A Deep Learning Framework for Decoding Motor Imagery Tasks of the Same Hand Using EEG Signals,” IEEE Access, vol. 7, pp. 109612–109627, 2019.

Hindarto and A. Muntasa, “Ekstraksi Sinyal EEG Menggunakan Koefisien dari Subband Transformasi Wavelet Diskrit,” J. Saintek, vol. 15, no. 2, pp. 61–65, 2018.

Y. Wang, S. Gao, and X. Gao, “Common Spatial Pattern Method for Channel Selection in Motor Imagery Based Brain-computer Interface,” 2005, pp. 5392–5395.

P. Wang, A. Jiang, X. Liu, J. Shang, and L. Zhang, “LSTM-based EEG classification in motor imagery tasks,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 11, pp. 2086–2095, 2018.

Y. R. Tabar and U. Halici, “A novel deep learning approach for classification of EEG motor imagery signals,” J. Neural Eng., vol. 14, no. 1, p. 16003, 2017.

B. C, L. R, M.-P. G, R, S. A, and P. G, “‘BCI Competition 2008 – Graz data set A,’” pp. 1–6, 2008.

L. Thede, “Practical Analog and Digital Filter Design,” p. 277, 2004.

Z. Milivojevic, Digital Filter Design. mikroElektronika, 2009.

R. Widadi and D. Zulherman, “Klasifikasi Pergerakan Tangan dan Kaki Berbasis Sinyal EEG Menggunakan Common Spatial Patterns dan Multilayer Perceptron Backpropagation,” J. Telemat., vol. 14, no. 2, pp. 43–50, 1858.

U. S. Islami, “Perancangan Sistem Optimasi Algoritma Common Spatial Pattern Menggunakan Perhitungan Energy Selection Pada Sinyal Electroencephalogram ( EEG ) The Design Of Common Spatial Pattern Optimization Algorithm System Using Energy Selection Calculation On Electro,” vol. 4, no. 3, pp. 3735–3742, 2017.

D. Rozado, A. Duenser, and B. Howell, “Erratum: Improving the performance of an EEG-based motor imagery brain computer interface using task evoked changes in pupil diameter (PLoS ONE (2015) 10:7 (e0133095),” PLoS One, vol. 10, no. 7, 2015.

Y. H. Hu and J. N. Hwang, Handbook of neural network signal processing. 2001.

E. Yulianto, A. Susanto, T. S. Widodo, and S. Wibowo, “Spektrum Frekuensi Sinyal EEG Terhadap Pergerakan Motorik dan Imajinasi Pergerakan Motorik,” Forum Tek., vol. 35, pp. 21–32, 2013.



  • There are currently no refbacks.

Indexed By:


Creative Commons License
Jurnal Sisfokom (Sistem Informasi dan Komputer) has ISSN 2301-7988 and e-ISSN 2581-0588 which is published by Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) ISB Atma Luhur under a Creative Commons Attribution-ShareAlike 4.0 International License.
Web Analytics Made Easy - StatCounter