Classification of Student Grade Data Using the K-Means Clustering Method

Authors

  • Lanjar Pamungkas Intitut Teknologi Telkom Purwokerto
  • Nur Aela Dewi Intitut Teknologi Telkom Purwokerto
  • Nessia Alfadila Putri Intitut Teknologi Telkom Purwokerto

DOI:

https://doi.org/10.32736/sisfokom.v13i1.1983

Keywords:

Clustering, Data, Education, Elbow, K-Means

Abstract

The fourth industrial revolution has brought significant changes in various sectors, and education has been greatly affected by technological advances. Automation, particularly in data processing, has simplified educational processes, particularly in managing student grade data. However, the increasing volume of data poses challenges in efficient processing. This research explores the application of K-Means clustering, a data mining technique, to cluster student grade data. This research uses the Elbow Method to determine the optimal number of clusters. The dataset, sourced from the Information Systems Study Program at the Telkom Institute of Technology Purwokerto, includes attributes such as Credits Taken, GPA, Number of Ds, Number of Es, and Credits Not Taken. The results identified three groups of students: "High Achievers," "Average Performance," and "Needs Improvement." Recommendations include academic challenges for high performers, better learning methods for average performers, and remedial programs for those who need improvement. This research demonstrates the efficacy of K-Means clustering in improving educational strategies and support systems based on student characteristics.

References

A. R. Taraju, N. Nurdin, and A. Pettalongi, “Tantangan dan Strategi Guru Menghadapi Era Revolusi Industri 4 . 0,” Pros. Kaji. Islam dan Integr. Ilmu di Era Soc. 5.0 (KIIIES 5.0) Pascasarj. Univ. Islam Negeri Datokarama Palu, vol. 1, pp. 314–315, 2022.

T. Kurniati and N. A. Wiyani, “Pembelajaran Berbasis Information and Communication Technology pada Era Revolusi Industri 4.0,” J. Imiah Pendidik. dan Pembelajaran, vol. 6, no. 1, p. 182, 2022, doi: 10.23887/jipp.v6i1.41411.

A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, pp. 20–28, 2023, doi: 10.58602/jaiti.v1i1.22.

N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 59–66, 2022, doi: 10.34010/komputika.v11i1.4350.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” J. Sains dan Manaj., vol. 9, no. 1, pp. 95–100, 2021, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/10428/4839

M. I. T. B. N. Sumadi, R. Putra, and A. Firmansyah, “Peran Perkembangan Teknologi Pada Profesi Akuntan Dalam Menghadapi Industri 4.0 Dan Society 5.0,” J. Law, Adm. Soc. Sci., vol. 2, no. 1, pp. 56–68, 2022, doi: 10.54957/jolas.v2i1.162.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

F. Hardiyanti, H. S. Tambunan, and I. S. Saragih, “Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus Diare Di Indonesia,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 598–603, 2019, doi: 10.30865/komik.v3i1.1666.

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019, doi: 10.31940/matrix.v9i3.1662.

A. W. Fuadah, F. N. Arifin, and O. Juwita, “Optimasi K-Klasterisasi Ketahanan Pangan Kabupaten Jember Menggunakan Metode Elbow,” INFORMAL Informatics J., vol. 6, no. 3, p. 136, 2021, doi: 10.19184/isj.v6i3.28363.

R. Yuliana Sari, H. Oktavianto, and H. Wahyu Sulistyo, “Algoritma K-Means Dengan Metode Elbow Untuk Mengelompokkan Kabupaten/Kota Di Jawa Tengah Berdasarkan Komponen Pembentuk Indeks Pembangunan Manusia K-Means Algorithm With Elbow Method To Grouping District/City in Central Java Based on Components of Human D,” J. Smart Teknol., vol. 3, no. 2, pp. 2774–1702, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST

A. R. Said, D. Arifianto, and H. A. Al Faruq, “Pengelompokan Kecamatan Di Kabupaten Jember Berdasarkan Tanaman Pangan Dengan Algoritma Fuzzy C-Means Dan Metode Elbow,” J. Smart Teknol., vol. 2, no. 1, pp. 1–12, 2020.

D. Widyadhana, R. B. Hastuti, I. Kharisudin, and F. Fauzi, “Perbandingan Analisis Klaster K-Means dan Average Linkage untuk Pengklasteran Kemiskinan di Provinsi Jawa Tengah,” Prism. Pros. Semin. Nas. Mat., vol. 4, pp. 584–594, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

S. Sonang, A. T. Purba, and F. O. I. Pardede, “Pengelompokan Jumlah Penduduk Berdasarkan Kategori Usia Dengan Metode K-Means,” J. Tek. Inf. dan Komput., vol. 2, no. 2, p. 166, 2019, doi: 10.37600/tekinkom.v2i2.115.

I. Ahmad, S. Samsugi, and Y. Irawan, “Implementasi Data Mining Sebagai Pengolahan Data,” J. Teknoinfo, vol. 16, no. 1, p. 46, 2022, [Online]. Available: http://portaldata.org/index.php/portaldata/article/view/107

A. Trisnawan, W. Hariyanto, and S. -, “Klasifikasi Beras Menggunakan Metode K-Means Clustering Berbasis Pengolahan Citra Digital,” RAINSTEK J. Terap. Sains Teknol., vol. 1, no. 1, pp. 16–24, 2019, doi: 10.21067/jtst.v1i1.3013.

K. S. H. Kusuma Al Atros, A. R. Padri, O. Nurdiawan, A. Faqih, and S. Anwar, “Model Klasifikasi Analisis Kepuasan Pengguna Perpustakaan Online Menggunakan K-Means dan Decission Tree,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 323, 2021, doi: 10.30865/jurikom.v8i6.3680.

R. Ishak and A. Bengnga, “Clustering Tingkat Pemahaman Mahasiswa Pada Perkuliahan Probabilitas Statistika Dengan Metode K-Means,” Jambura J. Electr. Electron. Eng., vol. 4, no. 1, pp. 65–69, 2022, doi: 10.37905/jjeee.v4i1.11997.

A. Prasetya, R. Salkiawati, and A. D. Alexander, “Analisis Cluster K-Means dengan Metode Elbow untuk Menentukan Pola Penjualan Produk Traffic Room Summarecon Mal Bekasi,” J. Students‘ Res. Comput. Sci., vol. 4, no. 1, pp. 105–118, 2023, doi: 10.31599/jsrcs.v4i1.2480.

Downloads

Published

2024-02-15

Issue

Section

Articles