Predicting the Number of Forest and Land Fire Hotspot Occurrences Using the ARIMA and SARIMA Methods

Authors

DOI:

https://doi.org/10.32736/sisfokom.v13i1.2018

Keywords:

Forestry, Land and Forest Fires, Hotspot, ARIMA, SARIMA

Abstract

Forests are an area and part of the environmental cycle that is very important for survival because forests are areas on Earth that regulate the balance of the ecosystem. Forest fires rank second only to illegal logging in Indonesia's list of forest destruction causes. Forest fires can occur due to two factors, namely natural and human factors. Therefore, the hotspot factor that can cause forest fires is an independent variable. The population of hotspots in the West Kalimantan region in 2020 amounted to 1,416 spots. This study aims to predict the number of hotspot occurrences on land and forests that cause fires before the fires spread and are challenging to overcome or extinguish. The method to indicate the number of hotspot occurrences uses the Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving Average (SARIMA) methods. Modeling ARIMA (0,1,1) and SARIMA (0,1,1) (2,2,1)12 obtained Root Mean Square Error (RMSE) evaluation results for ARIMA of 6.61 while SARIMA of 7.61. The ARIMA's Mean Squared Error (MSE) evaluation value is 43.70, and the SARIMA is 58.05. Based on these results, it can be concluded that the ARIMA model provides excellent and accurate performance in describing the trend of hotspot events that will occur in the future with a smaller RMSE value compared to SARIMA.

References

D. P. Melaponty, F. Fahrizal, and T. F. Manurung, “Species diversity of forest vegetation in city forest Bukit Senja area middle Singkawang district Singkawang city,” J. Hutan Lestari, vol. 7, no. 2, pp. 893–904, 2019.

A. Suhaibah, “Tinjauan Yuridis Terhadap Peranan Pemerintah Dalam Pelaksanaan Rehabilitasi Hutan Manggrove,” J. Sos. Hum. Sigli, vol. 2, no. 2, pp. 17–34, 2019, doi: 10.47647/jsh.v2i2.168.

S. Nurbaya, Efransyah, S. Murniningtyas, Erwinsyah, and E. Damayanti, Status Hutan dan Kehutanan Indonesia 2020, vol. 17, no. 2. 2021. [Online]. Available: http://journal.ummgl.ac.id/index.php/urecol/article/view/719/804%0Ahttp://www.forestprogramme.com/files/2011/05/FOREST-Standard-Guide_V04_UK.pdf

H. Wahyuni and S. Suranto, “Dampak Deforestasi Hutan Skala Besar terhadap Pemanasan Global di Indonesia,” JIIP J. Ilm. Ilmu Pemerintah., vol. 6, no. 1, pp. 148–162, 2021, doi: 10.14710/jiip.v6i1.10083.

A. H. Putra, F. Oktari, and A. M. Putriana, “Deforestasi dan Pengaruhnya Terhadap Tingkat Bahaya Kebakaran Hutan di Kabupaten Agam Provinsi Sumatera Barat,” J. Dialog Penanggulangan Bencana, vol. 10, no. 2, pp. 191–200, 2019.

A. D. Nurhayati and L. Arhami, “Gangguan Hutan di KPH Kuningan Divisi Regional Jawa Barat dan Banten,” J. Trop. Silvic., vol. 10, no. 3, pp. 159–165, 2019, doi: 10.29244/j-siltrop.10.3.159-165.

A. Muzaki, R. Pratiwi, and S. R. Az Zahro, “Pengendalian Kebakaran Hutan Melalui Penguatan Peran Polisi Kehutanan Untuk Mewujudkan Sustainable Development Goals,” LITRA J. Huk. Lingkungan, Tata Ruang, dan Agrar., vol. 1, no. 1, pp. 22–44, 2021, doi: 10.23920/litra.v1i1.579.

M. Alkaff, A. F. Zulkarnain, ‪Nurul F. Mustamin, and N. E. Yulianto, “Peramalan Jumlah Titik Api Pada Lahan Gambut Kalimantan Menggunakan Model Zero-Inflated Poisson Regression,” Inspir. J. Teknol. Inf. dan Komun., vol. 11, no. 2, p. 115, 2021, doi: 10.35585/inspir.v11i2.2664.‬‬‬

S. Santriwati, H. Halide, and H. Hasanuddin, “Faktor Osean – Atmosfer untuk Memprediksi Titik Panas (Hostspot) di Wilayah Asia Tenggara Bagian Selatan,” J. Geocelebes, vol. 5, no. 2, pp. 116–130, 2021, doi: 10.20956/geocelebes.v5i2.13454.

T. A. Pratiwi, M. Irsyad, and R. Kurniawan, “Klasifikasi Kebakaran Hutan dan Lahan Menggunakan Algoritma Naïve Bayes (Studi Kasus: Provinsi Riau),” J. Sist. dan Teknol. Inf., vol. 9, no. 2, p. 101, 2021, doi: 10.26418/justin.v9i2.42823.

Endrawati, J. Purwanto, S. Nugroho, and R. A. S, “Identifikasi Areal Bekas Kebakaran Hutan Dan Lahan Menggunakan Analisis Semi Otomatis Citra Satelit,” Semin. Nas. Geomatika 2017 Inov. Teknol. Penyediaan Inf. Geospasial untuk Pembang. Berkelanjutan, pp. 273–282, 2016.

B. H. Saharjo and D. A. Nugraha, “Pengaruh Curah Hujan terhadap Penurunan Titik Panas (Hotspot) ti Indonesia pada Tahun 2019-2020,” J. Trop. Silvic., vol. 13, no. 03, pp. 184–190, 2022, doi: 10.29244/j-siltrop.13.03.184-190.

U. Khaira, M. Alfalah, P. C. S. Gulo, and R. Purnomo, “Prediksi Kemunculan Titik Panas Di Lahan Gambut Provinsi Riau Menggunakan Long Short Term Memory,” J. Inform. J. Pengemb. IT, vol. 5, no. 3, pp. 77–82, 2020, [Online]. Available: http://ejournal.poltektegal.ac.id/index.php/informatika/article/view/1931

W. Maulida, “Model Prediksi Jumlah Kemunculan Titik Panas di Kabupaten Rokan Hilir Menggunakan Elman Recurrent Neural Network,” 2018, [Online]. Available: https://repository.ipb.ac.id/handle/123456789/93678

M. Alkaff and N. E. Yulianto, “Prediksi Jumlah Kejadian Titik Api Melalui Pendekatan Deret Waktu Menggunakan Model Seasonal Arima,” J. ELTIKOM, vol. 3, no. 2, pp. 54–63, 2019, doi: 10.31961/eltikom.v3i2.122.

I. B. B. Mahayana, I. Mulyadi, and S. Soraya, “Peramalan Penjualan Helm dengan Metode ARIMA (Studi Kasus Bagus Store),” Inferensi, vol. 5, no. 1, p. 45, 2022, doi: 10.12962/j27213862.v5i1.12469.

Zulhamidi and R. Hardianto, “Peramalan Penjualan Teh Hijau Dengan Metode Arima (Studi Kasus Pada Pt. Mk),” J. PASTI, vol. XI, no. 3, pp. 231–244, 2017.

M. I. Rizki and T. A. Taqiyyuddin, “Penerapan Model SARIMA untuk Memprediksi Tingkat Inflasi di Indonesia,” J. Sains Mat. dan Stat., vol. 7, no. 2, pp. 62–72, 2021, doi: 10.24014/jsms.v7i2.13168.

Acep Saepul Zamil, “Prediksi Tinggi Gelombang Laut Jakarta Utara Menggunakan Machine Learning: Perbandingan Algoritma Arima & Sarima,” J. Teknol. Inf. Dan Komun., vol. 14, no. 2, pp. 286–294, 2023, doi: 10.51903/jtikp.v14i2.650.

S. Putri and A. Sofro, “Peramalan Jumlah Keberangkatan Penumpang Pelayaran Dalam Negeri di Pelabuhan Tanjung Perak Menggunakan Metode ARIMA dan SARIMA,” MATHunesa J. Ilm. Mat., vol. 10, no. 1, pp. 61–67, 2022, doi: 10.26740/mathunesa.v10n1.p61-67.

V. P. Ariyanti and Tristyanti Yusnitasari, “Comparison of ARIMA and SARIMA for Forecasting Crude Oil Prices,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 2, pp. 405–413, 2023, doi: 10.29207/resti.v7i2.4895.

H. Harafani and R. S. Wahono, “Optimasi Parameter pada Support Vector Machine Berbasis Algoritma Genetika untuk Estimasi Kebakaran Hutan,” J. Intell. Syst., vol. 1, no. 2, pp. 82–90, 2015.

B. H. Saharjo and M. R. A. Nasution, “Pola Sebaran Titik Panas (Hotspot) Sebagai Indikator Terjadinya Kebakaran Hutan Dan Lahan Di Kabupaten Aceh Barat,” J. Silvikultur Trop., vol. 12, no. 2, pp. 60–66, 2021, [Online]. Available: http://tanahair.indonesia.go.id/

F. R. Ananda, E. P. Purnomo, A. T. Fathani, and L. Salsabila, “Strategi Pemerintah Daerah Dalam Mengatasi Kebakaran Hutan dan Lahan di Kabupaten Kotawaringin Barat,” J. Ilmu Sos. dan Hum., vol. 11, no. 2, pp. 173–181, 2022, doi: 10.23887/jish.v11i2.34698.

Putra, E. Heryanto, A. Sopaheluwakan, R. P. Pradana, and U. Haryoko, “Sebaran Spasial Dan Temporal Titik Panas (Hotspot) Di Indonesia Dari Satelit Modis Dengan Metode Gridding,” Semin. Nas. Geomatika, no. 3, pp. 1123–1128, 2019, [Online]. Available: https://scholar.google.co.id/scholar?oi=bibs&cluster=3216153241389431135&btnI=1&hl=id

H. Sastypratiwi and R. D. Nyoto, “Analisis Data Artikel Sistem Pakar Menggunakan Metode Systematic Review,” J. Edukasi dan Penelit. Inform., vol. 6, no. 2, p. 250, 2020, doi: 10.26418/jp.v6i2.40914.

W. Pangestu, A. Widodo, and B. Rahayudi, “Prediksi Jumlah Kendaraan Bermotor di Indonesia Menggunakan Metode Average-Based Fuzzy Time Series Models,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 9, p. 964, 2018.

T. Safitri, N. Dwidayati, and K. Kunci, “Perbandingan Peramalan Menggunakan Metode Exponential Smoothing Holt-Winters dan Arima,” Unnes J. Math., vol. 6, no. 1, pp. 48–58, 2017, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

G. Christie, D. Hatidja, and R. Tumilaar, “Penerapan Metode SARIMA dalam Model Intervensi Fungsi Step untuk Memprediksi Jumlah Pegunjung Objek Wisata Londa (Application of the SARIMA Method in the Step Function Intervention to Predict the Number of Visitors at Londa Tourism Object),” J. Ilm. Sains, vol. 22, no. 2, p. 96, 2022, doi: 10.35799/jis.v22i2.40961.

O. A. Amalia and A. H. M. Putri, “Comparison of backpropagation artificial neural network and SARIMA in predicting the number of railway passengers,” J. Phys. Conf. Ser., vol. 1663, no. 1, 2020, doi: 10.1088/1742-6596/1663/1/012033.

W. Anbiya and F. C. Garini, “Application of GARCH Forecasting Method in Predicting The Number of Rail Passengers ( Thousands of People ) in Jabodetabek Region,” vol. 18, no. 2, pp. 198–223, 2022, doi: 10.20956/j.v18i2.18382.

S. Faradilla, “Peramalan Penjualan Produk Baja dan Besi di PT MSU dengan Pendekatan Metode ARIMA dan Single Moving Average,” vol. 12, no. 1, 2023.

A. Sinardi and R. D. E. Putra, “Prediksi Awal Musim Hujan Di Waingapu Menggunakan Metode ARIMA,” vol. 01, pp. 1–6, 2020.

H. Djoni, “Penerapan Model ARIMA untuk Memprediksi Harga Saham PT. Telkom Tbk.,” J. Ilm. Sains, vol. 11, no. 1, pp. 116–123, 2011.

R. H. Dananjaya, S. Sutrisno, and F. A. Wellianto, “Akurasi Penggunaan Metode Support Vector Machine Dalam Prediksi Penurunan Pondasi Tiang,” Matriks Tek. Sipil, vol. 10, no. 3, p. 298, 2022, doi: 10.20961/mateksi.v10i3.64519.

A. A. Gofur and U. D. Widianti, “Sistem Peramalan Untuk Pengadaan Material Unit Injection Di Pt. Xyz,” Komputa J. Ilm. Komput. dan Inform., vol. 2, no. 2, 2015, doi: 10.34010/komputa.v2i2.86.

Downloads

Published

2024-02-15

Issue

Section

Articles