Sentiment Analysis of Google Play Store User Reviews on Digital Population Identity App Using K-Nearest Neighbors

Rudi Kurniawan(1*), Harma Oktafia Lingga Wijaya(2), Rani Purnama Aprisusanti(3)

(1) Department of Computer System Engineering, Faculty of Engineering Science, Universitas Bina Insan Lubuklinggau
(2) Department of Information System, Faculty of Engineering Science, Universitas Bina Insan Lubuklinggau
(3) Department of Information System, Faculty of Engineering Science, Universitas Bina Insan Lubuklinggau
(*) Corresponding Author

Abstract


The Digital Population Identity Application provides convenience for users to access and manage their population data digitally. Based on the increasing usage of the Digital Population Identity Application on the Google Play Store, various user reviews of the application have emerged. Therefore, sentiment analysis is needed to provide a deeper understanding of user perceptions and to classify user reviews of the Digital Population Identity Application. Sentiment analysis is a computational study of opinions, feelings, and emotions expressed in text, using the K-Nearest Neighbors method, which is a classification method based on the closest distance or similarity to objects in the training data. Using 5000 relevant review data from September 2022 to December 2023, after labeling them into positive, negative, and neutral sentiment classes, the results show 3581 negative sentiments, 1031 positive sentiments, and 388 neutral sentiments. Testing was conducted by applying the K-Nearest Neighbors method in the classification stage, testing this method by varying K values from 1 to 10. The best results were obtained with a training data ratio of 90% to testing data ratio of 10%. The best results were achieved at K values of 8, 9, and 10, with an accuracy of 81%, precision of 82%, recall of 95%, and an F1-Score of 88%. With a training data ratio of 70% to testing data ratio of 30%, the best results were obtained at K values of 6, 7, 8, 9, and 10, with an accuracy of 80%, precision of 81%, recall of 95%, and an F1-Score of 88%. Based on the results of this research, the K-Nearest Neighbors method can be used for sentiment classification of user reviews with good results.


Keywords


Sentiment Analysis; Digital Population Identity; K-Nearest Neighbors

Full Text:

PDF

References


E. Islami And J. P. Islam, “Pemanfaatan Website Sebagai Bentuk Digitalisasi Pelayanan Islam,” Pp. 1167–1182, 2022, Doi: 10.30868/Ei.V11i01.2979.

G. Vinodhini, “Sentiment Analysis And Opinion Mining : A Survey International Journal Of Advanced Research In Sentiment Analysis And Opinion Mining : A Survey,” No. June 2012, 2014.

N. Faridhotun, E. Haerani, And ..., “Analisis Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode K-Nearst Neighbor,” J. Inf. …, Vol. 4, No. 3, Pp. 855–864, 2023, Doi: 10.47065/Josh.V4i3.3349.

M. Farid And E. Firdaus, “Analisis Sentimen Tokopedia Pada Ulasan Di Google Playstore Menggunakan Algoritma Naïve Bayes Classifier Dan K-Nearest Neighbor,” Vol. 9, No. 5, Pp. 1329–1336, 2022, Doi: 10.30865/Jurikom.V9i5.4774.

R. Ramadhan, M. Afdal, I. Permana, And M. Jazman, “Analisis Sentimen Pada Ulasan Aplikasi Maxim Di Google Play Store Dengan K-Nearest Neighbor,” Vol. 10, No. 3, 2023, Doi: 10.30865/Jurikom.V10i3.6396.

M. N. Shariff, “Tata Kelola Penerapan Teknologi Informasi Pengelolaan Pajak Di Dppkab Kab. Oki Menggunakan Framework Cobit 5,” Semin. Nas. Teknol. Inf. Dan Komun. X, Pp. 353–358, 2018.

N. Habibah, E. Budianita, M. Fikry, And I. Iskandar, “Analisis Sentimen Mengenai Penggunaan E-Wallet Pada Google Play Menggunakan Lexicon Based Dan K-Nearest Neighbor,” J. Ris. Komputer), Vol. 10, No. 1, Pp. 2407–389, 2023, Doi: 10.30865/Jurikom.V10i1.5429.

S. Rahayu, Y. Mz, J. E. Bororing, And R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-Nn) Untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial Flip,” Edumatic J. Pendidik. Inform., Vol. 6, No. 1, Pp. 98–106, 2022, Doi: 10.29408/Edumatic.V6i1.5433.

A. D. Adhi Putra, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma Knn,” Jatisi (Jurnal Tek. Inform. Dan Sist. Informasi), Vol. 8, No. 2, Pp. 636–646, 2021, Doi: 10.35957/Jatisi.V8i2.962.

J. Homepage, S. R. Cholil, T. Handayani, R. Prathivi, And T. Ardianita, “Ijcit (Indonesian Journal On Computer And Information Technology) Implementasi Algoritma Klasifikasi K-Nearest Neighbor (Knn) Untuk Klasifikasi Seleksi Penerima Beasiswa,” Ijcit (Indonesian J. Comput. Inf. Technol., Vol. 6, No. 2, Pp. 118–127, 2021.

Y. Yadi, “Analisa Usability Pada Website Traveloka,” J. Ilm. Betrik, Vol. 9, No. 03, Pp. 172–180, 2018, Doi: 10.36050/Betrik.V9i03.43.

B. I. Mayang Milasari, Cindi Wulandari, “Analisis Tingkat Kualitas Layanan Sub Menu Pengecekan Data Penerima Bantuan Sosial Pada Website Dtks Dinas Sosial Kota Lubuklinggau Menggunakan Metode E-Govqual,” Pp. 1389–1397, 2022.

M. Riski, M. Fikry, And Yusra, “Klasifikasi Sentimen Ulasan Aplikasi Whatsapp Di Play Store Menggunakan Metode K-Nearest Neighbor,” Media Online), Vol. 4, No. 1, Pp. 438–444, 2023, Doi: 10.30865/Klik.V4i1.1050.

S. Hasanah, I. Purwasih, And ..., “Analisis Sentimen Terhadap Masyarakat Adanya Uang Kertas Baru Menggunakan Algoritma K-Nearest Neighbor (Knn),” Ikra-Ith Inform. …, Vol. 7, No. 2, Pp. 105–114, 2023, [Online]. Available: Http://Journals.Upi-Yai.Ac.Id/Index.Php/Ikraith-Informatika/Article/View/2813%0ahttps://Journals.Upi-Yai.Ac.Id/Index.Php/Ikraith-Informatika/Article/Download/2813/2065

Amalia Elma Sari, “Klasifikasi Ulasan Pengguna Aplikasi Mandiri Online Di Google Play Store Dengan Menggunakan Metode Information Gain Dan Naive Bayes Classifier,” 2019. Https://Openlibrary.Telkomuniversity.Ac.Id/Pustaka/152491/Klasifikasi-Ulasan-Pengguna-Aplikasi-Mandiri-Online-Di-Google-Play-Store-Dengan-Menggunakan-Metode-Information-Gain-Dan-Naive-Bayes-Classifier.Html

Elmayati, “Elmayati Aplikasi Sistem Informasi Pengajuan Beasiswa Berbasis Web Pada Sekolah Tinggi Manajemen Dan Ilmu Komputer Musi Rawas ( Stmik-Mura ) Kota Lubuklinggau Jusim , Vol 1 No . 1 , Desember 2016,” Jusim, Vol. 1, No. 1, Pp. 8–18, 2016, [Online]. Available: Http://Jurnal.Univbinainsan.Ac.Id/Index.Php/Jusim/Article/Download/226/190

Wikipedia, “Google Play Store.” [Online]. Available: Https://Id.Wikipedia.Org/Wiki/Google_Play

A. Hermawan, I. Jowensen, J. Junaedi, And Edy, “Implementasi Text-Mining Untuk Analisis Sentimen Pada Twitter Dengan Algoritma Support Vector Machine,” Jst (Jurnal Sains Dan Teknol., Vol. 12, No. 1, Pp. 129–137, 2023, Doi: 10.23887/Jstundiksha.V12i1.52358.

F. Prasetya And F. Ferdiansyah, “Analisis Data Mining Klasifikasi Berita Hoax Covid 19 Menggunakan Algoritma Naive Bayes,” J. Sist. Komput. Dan Inform., Vol. 4, No. 1, P. 132, 2022, Doi: 10.30865/Json.V4i1.4852.

J. K. Antartika, “Analisis Sentimen Pada Ulasan Aplikasi Home Credit Dengan Metode Svm Dan Knn,” Vol. 1, Pp. 174–181, 2023.

Adminlp2m, “Algoritma K-Nearest Neighbors (Knn) – Pengertian Dan Penerapan,” 2023, [Online]. Available: Https://Lp2m.Uma.Ac.Id/2023/02/16/Algoritma-K-Nearest-Neighbors-Knn-Pengertian-Dan-Penerapan/

J. Informatika And S. Informasi, “Informasi (Jurnal Informatika Dan Sistem Informasi) Volume 15 No.1 / Mei / 2023,” Vol. 15, No. 1, Pp. 1–17, 2023.

D. Sartika, “Implementasi Algoritma K-Nearest Neighbour Dalam Menganalisis Sentimen Terhadap Program Merdeka Belajar Kampus Merdeka ( Mbkm ),” Pp. 69–76, 2020.

D. A. Manalu And G. Gunadi, “Implementasi Metode Data Mining K-Means Clustering Terhadap Data Pembayaran Transaksi Menggunakan Bahasa Pemrograman Python Pada Cv Digital Dimensi,” Infotech J. Technol. Inf., Vol. 8, No. 1, Pp. 43–54, 2022, Doi: 10.37365/Jti.V8i1.131.

F. David, P. Studi, T. Informatika, And F. Teknologi, “Visualisasi Data Dalam Bentuk 3 Dimensi Dengan Abstrak Seminar Nasional Pimimd-5 , Itp , Padang,” Pp. 1–6, 2019, Doi: 10.21063/Pimimd5.2019.1.

B. I. Pendahuluan, “Panduan Pembuatan Flowchart,” 2017.

R. Rosaly, “Pengertian Flowchart Beserta Fungsi Dan Simbol-Simbol Flowchart Yang Paling Umum Digunakan”.

S. Silvilestari, “Data Mining Menggunakan Algoritma K-Nearest Neighbor Dalam Menentukan Kredit Macet Barang Elektronik,” J. Media Inform. Budidarma, Vol. 5, No. 3, P. 1063, 2021, Doi: 10.30865/Mib.V5i3.3100.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, And W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, Vol. 14, No. 2, P. 115, 2020, Doi: 10.33365/Jti.V14i2.679.




DOI: https://doi.org/10.32736/sisfokom.v13i2.2071

Refbacks

  • There are currently no refbacks.



Indexed By:

 



Creative Commons License
Jurnal Sisfokom (Sistem Informasi dan Komputer) has ISSN 2301-7988 and e-ISSN 2581-0588 which is published by Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) ISB Atma Luhur under a Creative Commons Attribution-ShareAlike 4.0 International License.
Web Analytics Made Easy - StatCounter