Comparison of the Performance of Random Forest and K-Nearest Neighbor in Classifying Leukemia Using Principal Component Analysis
(1) Universitas Islam Negeri Sumatera Utara Medan
(2) Universitas Islam Negeri Sumatera Utara Medan
(3) Universitas Islam Negeri Sumatera Utara Medan
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
D. Prasetya, “Leukemia, Penyakit Kanker Darah, yuk simak selengkapnya,” Hermina Pateur, 2023. https://herminahospitals.com/id/articles/leukemia-penyakit-kanker-darah-yuk-simak-selengkapnya (accessed Jan. 20, 2024).
V. Rupapara, F. Rustam, W. Aljedaani, H. F. Shahzad, E. Lee, and I. Ashraf, “Blood cancer prediction using leukemia microarray gene data and hybrid logistic vector trees model,” Sci. Rep., vol. 12, no. 1, pp. 1–15, 2022, doi: 10.1038/s41598-022-04835-6.
B. Pradana and A. Aditsania, “Implementasi Minimum Redudancy Maksimum Relevance ( MRMR ) dan Genetic Algorithm ( GA ) untuk Reduksi Dimensi pada Klasifikasi Data Micorarray Menggunakan Functional Link Neural Network ( FLNN ),” vol. 6, no. 2, pp. 8966–8977, 2019.
I. G. N. P. V. Geramona and W. Astuti, “Implementasi Minimum Redundancy Maximum Relevance sebagai Teknik Reduksi Dimensi pada Klasifikasi Kanker Usus Besar Menggunakan Random Forest,” vol. 7, no. 1, pp. 2490–2497, 2020.
M. S. L. & P. S. Farah Diba, “Analisis Random Forest Menggunakan Principal Component Analysis Pada Data Berdimensi Tinggi Farah,” Indones. J. Comput. Sci., vol. 12, no. 4, pp. 2152–2160, 2023.
Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A deep learning-based multi-model ensemble method for cancer prediction,” Comput. Methods Programs Biomed., vol. 153, pp. 1–9, 2018, doi: 10.1016/j.cmpb.2017.09.005.
O. Gal, N. Auslander, Y. Fan, and D. Meerzaman, “Predicting Complete Remission of Acute Myeloid Leukemia: Machine Learning Applied to Gene Expression,” Cancer Inform., vol. 18, 2019, doi: 10.1177/1176935119835544.
R. M. Awangga and N. H. Khonsa’, “Analisis Performa Algoritma Random Forest dan Naive Bayes Multinomial pada Dataset Ulasan Obat dan Ulasan Film,” InComTech J. Telekomun. dan Komput., vol. 12, no. 1, p. 60, 2022, doi: 10.22441/incomtech.v12i1.14770.
M. Arhami and M. Nasir, Data Mining Algoritma dan Implementasi. Yogyakarta: Penerbit Andi, 2020.
A. U. Zailani and N. L. Hanun, “Penerapan Algoritma Klasifikasi Random Forest Untuk Penentuan Kelayakan Pemberian Kredit Di Koperasi Mitra Sejahtera,” Infotech J. Technol. Inf., vol. 6, no. 1, pp. 7–14, 2020, doi: 10.37365/jti.v6i1.61.
C. Patgiri and A. Ganguly, “Adaptive thresholding technique based classification of red blood cell and sickle cell using Naïve Bayes Classifier and K-nearest neighbor classifier,” Biomed. Signal Process. Control, vol. 68, no. April, p. 102745, 2021, doi: 10.1016/j.bspc.2021.102745.
M. S. Santos, P. H. Abreu, S. Wilk, and J. Santos, “How distance metrics influence missing data imputation with k-nearest neighbours,” Pattern Recognit. Lett., vol. 136, pp. 111–119, 2020, doi: 10.1016/j.patrec.2020.05.032.
DOI: https://doi.org/10.32736/sisfokom.v13i2.2165
Refbacks
- There are currently no refbacks.