Prediction of Monthly Rainfall with Using Monte Carlo Simulation in the Medan City Area

Authors

  • Arini Arini Department of Mathmatics, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara
  • Hendra Cipta Department of Mathmatics, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.32736/sisfokom.v13i3.2307

Keywords:

Rainfall, Monte Carlo Simulation, nature of rainfall, accuracy test results, prediction

Abstract

The climate in Indonesia, which is a tropical region, is always uncertain and makes it difficult to predict weather conditions. Weather conditions can be influenced by rainfall, air temperature, wind speed, air humidity and light radiation intensity. Rainfall is relatively high and varies throughout the year, the average monthly rainfall is around 150-300 mm in the rainy season and 50-100 mm in the dry season. There are several characteristics of rainfall, namely convective rain, frontal rain and orographic rain. For this reason, a method is needed that can solve problems in predicting monthly rainfall properties using the Monte Carlo simulation method. From this study, the results of the prediction of rainfall properties were obtained with 36 data from 2021 to 2024 which had a MAPE test result of 12.28%. The test results came from the average calculation carried out on the Monte Carlo method prediction with 5 variables.

References

Dian Puspita Chandra Dan Alethea Suryadibrata, Analisis Prediksi Curah Hujan Dan. 2019.

B. Prasetyo, H. Irwandi, Dan N. Pusparini, “Karakteristik Curah Hujan Berdasarkan Ragam Topografi Di Sumatera Utara,” J. Sains Teknol. Modif. Cuaca, Vol. 19, No. 1, Hal. 11, 2018,

Y. Andrian Dan P. H. Putra, “Analisis Penambahan Momentum Pada Proses Prediksi Curah Hujan Kota Medan Menggunakan Metode,” Vol. 2014, No. September, 2014.

Wenny Marta Dolok Saribu, “Prediksi Jumlah Penumpang Armada Bus Pt Raja Perdana Inti (Rapi) Dengan Simulasi Monte Carlo.” Hal. 5–24, 2017.

Yovi, Ringgo Dwika, Dan Eka, “Penerapan Metode Monte Carlo Pada Simulasi Prediksi Jumlah Calon Mahasiswa Baru Universitas Muhammadiyah Bengkulu,” J. Process., Vol. 17, No. 2, Hal. 74–81, 2022,

S. Peronika, J. Fisika, F. Matematika, D. A. N. Ilmu, P. Alam, Dan U. Sriwijaya, “Prediksi Curah Hujan Di Daerah Bandara Sultan Mahmud Badaruddin Ii Menggunakan Jaringan Syaraf Tiruan Dengan Metode Backpropagation Dan Radial Basis Function Network,” 2017.

F. T. Industri Dan U. I. Indonesia, “Prediksi Curah Hujan Menggunakan Metode Long Short Term Memory ( Studi Kasus : Kota Bandung ) Prediksi Curah Hujan Menggunakan Metode Long Short Term Memory ( Studi Kasus : Kota Bandung ),” 2022.

S. Andriani, D. M. Akhmad, Dan F. D. Wihartiko, “Pemodelan Monte Carlo Untuk Prediksi Sifat Hujan Harian,” Comput. J. Comput. Sci. Inf. Syst., Vol. 4, No. 2, Hal. 124, 2020,

H. Cipta, “Fuzzy Model Tahani As Decision Support System For Employee Promotion,” Int. J. Eng. Technol., Vol. 7, No. 2.5 Special Issue 5, Hal. 88–91, 2018

N. A. Dalimunthe, “Simulasi Prediksi Permintaan Kue Kacang Di Cv. Fawas Jaya Medan Menggunakan Metode Monte Carlo,” 2021,

D. E. Malla Avila, “Prediksi Curah Hujan Kecamatan Jawa Timur Menggunakan Algoritma Backpropagation Neural Network Berdasarkan Faktor Penentu Curah Hujan,” No. 8.5.2017. Hal. 2003–2005, 2022.

I. A. Hasugian, K. Muhyi, Dan N. Firlidany, “Simulasi Monte Carlo Dalam Memprediksi Jumlah Pengiriman Dan Total Pendapatan,” Cetak) Bul. Utama Tek., Vol. 17, No. 2, Hal. 1410–4520, 2022.

Eka Larasati Amalia, Yoppy Yunhasnawa, Dan A. R. Rahmatanti, “Sistem Prediksi Penjualan Frozen Food Dengan Metode Monte Carlo (Studi Kasus: Supermama Frozen Food),” J. Buana Inform., Vol. 13, No. 02, Hal. 136–145, 2022, [14] A. Nasir, Et, “Analisis Diagnostik Variabel Cuaca Untuk Estimasi Pola Curah Hujan Di Medan Menggunakan Model Bayesian Vector Autoregressive,” Vol. 9, Hal. 356–363, 2023.

B. P. S. S. Utara, “Data Curah Hujan Tahun 2021-2023.

Downloads

Published

2024-11-25

Issue

Section

Articles